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CONQUEST is a local orbital density functional theory (DFT) code, capable of massively parallel operation with ex-
cellent scaling. It uses a local orbital basis to represent the Kohn-Sham eigenstates or the density matrix. CONQUEST
can be applied to atoms, molecules, liquids and solids, but is particularly efficient for large systems. The code can
find the ground state using exact diagonalisation of the Hamiltonian or via a linear scaling approach. The code has
demonstrated scaling to over 2,000,000 atoms and 200,000 cores when using linear scaling, and over 3,400 atoms and
850 cores with exact diagonalisation. CONQUEST can perform structural relaxation (including unit cell optimisation)
and molecular dynamics (in NVE, NVT and NPT ensembles with a variety of thermostats).
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CHAPTER

ONE

GETTING STARTED

• Overview: Why CONQUEST?

• Frequently Asked Questions

• Quick Overview

• Installation

• Example calculations

1.1 Overview: Why CONQUEST?

There are already many DFT codes which are available under open-source licences. Here we give reasons why you
might choose to use CONQUEST.

1.1.1 Large-scale simulations

CONQUEST is designed to scale to large systems, either using exact diagonalisation (with the multisite support function
approach, we have demonstrated calculations on over 3,000 atoms) or with linear scaling (where calculations on over
2,000,000 atoms have been demonstrated). Moreover, the same code and basis sets can be used to model systems from
1 atom to more than 1,000,000 atoms.

1.1.2 Efficient parallelisation

CONQUEST is an inherently parallel code, with scaling to more than 800 cores demonstrated for exact diagonalisation,
and nearly 200,000 cores with linear scaling. This scaling enables efficient use of HPC facilities. CONQUEST (in linear
scaling mode, as well as to a certain extent for exact diagonalisation) scales best with weak scaling: fixing the number
of atoms per core (or thread) and choosing a number of cores based on the number of atoms.

CONQUEST also offers some OpenMP parallelisation in linear scaling mode, with relatively low numbers of MPI
threads per node, and further parallelisation performed with OpenMP.
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1.1.3 Linear scaling DFT

The ideas of linear scaling have been current for more than twenty years, but it has proven challenging to make efficient,
accurate codes to implement these ideas. CONQUEST has demonstrated effective linear scaling (with excellent parallel
scaling), though is still somewhat restricted in the basis sets that can be used. For calculations beyond 5,000-10,000
atoms with DFT, linear scaling is the only option.

1.1.4 Basis sets

CONQUEST expresses the Kohn-Sham eigenstates or the density matrix (which are equivalent) in terms of local orbitals
called support functions. These support functions are made from one of two basis sets: pseudo-atomic orbitals (PAOs)
or blip functions (B-splines); the main basis functions in use in CONQUEST are the PAOs. A PAO generation code is
included with the CONQUEST distribution, with well-defined and reliable default basis sets for most elements.

The simplest choice is to use one PAO for each support function (typically this allows calculations up to 1,000 atoms).
For diagonalisation beyond this system size, a composite basis is used, where PAOs from several are combined into a
smaller set of support functions (multi-site support functions, or MSSF). With MSSF, calculations on 3,000+ atoms
are possible on HPC platforms. For linear scaling, more care is required with basis sets (more details can be found
here).

1.2 Frequently Asked Questions

1.2.1 When should I use CONQUEST?

You can use CONQUEST for any DFT simulations that you need to perform. It is efficient for small problems, though
may not be as efficient as other codes (e.g. plane wave codes) because it has been designed for massively parallel
operation, which brings some overhead. If you need to perform DFT calculations on large systems (several hundred
atoms or beyond) or want to perform highly parallel calculations, you should definitely consider CONQUEST.

CONQUEST uses Hamann optimised norm-conserving Vanderbilt (ONCV) pseudopotentials, which can also be used
by PWSCF and Abinit which allows direct comparisons between the codes.

1.2.2 When should I use linear scaling?

You should use linear scaling if you need to model systems with more than about 5,000 atoms, though gains are often
found for smaller systems (from 1,000 atoms upwards).

Linear scaling calculations offer the prospect of scaling to significantly larger systems than traditional DFT calculations;
however, they make approximations and require some care and characterisation. In particular, instead of solving for
eigenvalues and eigenstates, linear scaling methods solve for the density matrix, so that energy-resolved information
(e.g. DOS and band energies) are not available. To enable linear scaling, a range is also imposed on the density matrix
and it is important to test the effect of this range.
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1.2.3 Will you implement a specific feature for me?

We cannot guarantee to implement specific features, though we are always happy to take suggestions. We also welcome
new developers: if there is something that you would like to see in the code, please do talk to us about joining the
development effort.

1.2.4 How do I report a bug?

Please use the GitHub issues page. Include details of the compiler and libraries used, the version of CONQUEST, and
the input and output files (if possible). We will do our best to check the bug and fix it, but cannot guarantee to help on
any timescale.

1.2.5 How do I get help?

The Conquest mailing list (details) is the best place to get help. However, the developers cannot guarantee to answer
any questions, though they will try. Bug reports should be made through the GitHub issues page.

1.3 Quick Overview

1.3.1 Setting up a calculation

CONQUEST requires three types of file for a calculation:

• A coordinate file

• Ion files (pseudopotentials)

• The input file (Conquest_input)

Coordinates

CONQUEST works with orthorhombic unit cells (i.e. with angles between lattice vectors at ninety degrees). The
coordinate file is laid out simply: lattice vectors, number of atoms, atom coordinates (along with species and movement
flags). Either fractional or Cartesian coordinates can be read (the default is fractional; Cartesian coordinates require
a flag to be set in the input file). CONQUEST also reads and writes PDB format coordinate files for biomolecular
simulations. More information can be found in Coordinates.

Ion files

The ion files contain the pseudopotentials and pseudo-atomic orbitals for the elements, and follow a format similar to
the ion files from Siesta (CONQUEST can read Siesta ion files). A set of default inputs to generate ion files is available
in the directory pseudo-and-pao. These contain pseudopotentials based on the PseudoDojo library, and allow ion files
to be produced with the basis set generation code that is included with CONQUEST in the tools/BasisGeneration
directory. Full details are found here.

1.3. Quick Overview 5
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Conquest_input

The Conquest_input file contains all of the input flags to control a CONQUEST run. At a minimum, the file must
specify: the run type (e.g. static or md); the coordinate file name; and the number of species and the ion file names.
For a well characterised calculation, further options must be given (for instance setting details for the calculation of
the density matrix). Simple examples are given in Example calculations and full documentation of all options can be
found in Input tags.

Go to top

1.3.2 Output from a calculation

The main output from CONQUEST is in a single file, named Conquest_out by default (this can be changed, and
output can be written to stdout rather than a file). This file contains details of the calculation, energies, forces and
stresses and the various electronic structure and atomic movement calculations performed. The most important files
that are produced during a run are:

• Conquest_out The output file

• Conquest_warnings A list of any warnings issued by the code (also in Conquest_out)

• coord_next.dat The updated set of atomic positions

• conquest.bib References suggested for the calculation performed

• input.log A log of input options (both set by user and defaults)

Other files are produced by different run types, and are discussed elsewhere.

1.4 Installation

You will need to download and compile the code before you can use it; we do not supply binaries.

1.4.1 Downloading

CONQUEST is accessed from the GitHub repository; it can be cloned:

git clone https://github.com/OrderN/CONQUEST-release destination-directory

where destination-directory should be set by the user. Alternatively, it can be downloaded from GitHub as a zip
file and unpacked:

https://github.com/OrderN/CONQUEST-release/archive/master.zip

Go to top
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1.4.2 Compiling

Once you have the distribution, you will need to compile the main Conquest code (found in the src/ directory),
along with the ion file generation code (found in the tools/ directory). Conquest requires a working MPI installation
including a Fortran90 compiler (often mpif90 but this can vary), along with a few standard libraries:

• BLAS and LAPACK (normally provided by the system vendor)

• FFTW 3.x (more detail can be found at http://www.fftw.org/)

• ScaLAPACK (often provided as part of an HPC system; the source code can be obtained from the netlib repository
if you need to compile it)

Additionally, Conquest can use LibXC if it is available (v4.x or later).

The library locations are set in the system.make file in the src/system directory, along with other parameters needed
for compilation. The default file name is system.make but you can select another file with make SYSTEM=label
which would then use the file system.label.make in the src/system directory. system.<systemname>.make
files are provided for some HPC systems used by the community, but if you want to run locally or on a different system,
you will need to create an appropriate system.make file. Use src/system/system.example.make as a starting
point.

• FC (typically FC=mpif90 will be all that is required)

• COMPFLAGS (set these to specify compiler options such as optimisation)

• BLAS (specify the BLAS and LAPACK libraries)

• SCALAPACK (specify the ScaLAPACK library)

• FFT_LIB (must be left as FFTW)

• XC_LIBRARY (choose XC_LIBRARY=CQ for the internal Conquest library, otherwise XC_LIBRARY=LibXC_v4 for
LibXC v4.x, or XC_LIBRARY=LibXC_v5 for LibXC v5.x and v6.x)

• Two further options need to be set for LibXC:

– XC_LIB (specify the XC libraries)

– XC_COMPFLAGS (specify the location of the LibXC include and module files, e.g. -I/usr/local/
include)

Once these are set, you should make the executable using make.

The ion file generation code is compiled using the same options required for the main code.

Go to top

Multi-threading

CONQUEST can use OpenMP for multi-threading; some multi-threading is available throughout the code, while there
are specific matrix multiplication routines which can use multi-threading for the linear scaling solver. The number of
threads is set via the environment variable OMP_NUM_THREADS.

Compiler flags to enable OpenMP are dependent on the vendor, but should be specified via OMPFLAGS in the system.
make file. If compiling with OpenMP then you should also change the variable OMP_DUMMY in the same file to be blank
to enable the number of threads to be included in the output.

On some systems, the default stack size for OpenMP is set to be rather small, and this can cause a segmentation fault
when running with multiple threads. We recommend testing the effect of the environment variable OMP_STACKSIZE
(and suggest setting it to 50M or larger as a first test).

Go to top
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1.4.3 Installing with Spack

CONQUEST and all of its dependencies can be installed with Spack. The CONQUEST package requires Spack v0.21
or later. If Spack isn’t available or up to date on your system, it is relatively straightforward to install it with user
permissions following the install instructions. When setting up Spack on a new system, it is recommended to configure
it to use available system compilers and system packages. Once spack is installed and set up, install CONQUEST with:

spack install conquest

and load the Conquest executable to PATH with

spack load conquest

The build can be customized by adding options to the Spack spec conquest. The CONQUEST package includes
variants for OpenMP support and different matrix multiplication kernels; more details can be found in the Spack CON-
QUEST package.

Go to top

1.5 Example calculations

All example calculations here use diagonalisation and PAO basis sets (with a simple one-to-one mapping between PAOs
and support functions).

1.5.1 Static calculation

We will perform a self-consistent electronic structure calculation on bulk silicon. The coordinate file that is needed is:

10.36 0.00 0.00
0.00 10.36 0.00
0.00 0.00 10.36
8
0.000 0.000 0.000 1 T T T
0.500 0.500 0.000 1 T T T
0.500 0.000 0.500 1 T T T
0.000 0.500 0.500 1 T T T
0.250 0.250 0.250 1 T T T
0.750 0.750 0.250 1 T T T
0.250 0.750 0.750 1 T T T
0.750 0.250 0.750 1 T T T

You should save this in an appropriate file (e.g. coords.dat). The inputs for the ion file can be found in
pseudo-and-pao/PBE/Si (for the PBE functional). Changing to that directory and running the MakeIonFiles util-
ity (in tools) will generate the file SiCQ.ion, which should be copied to the run directory, and renamed to Si.ion.
The Conquest_input file requires only a few simple lines at its most basic:

AtomMove.TypeOfRun static
IO.Coordinates coords.dat
Grid.GridCutoff 50
Diag.MPMesh T
Diag.GammaCentred T
Diag.MPMeshX 2
Diag.MPMeshY 2

(continues on next page)
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(continued from previous page)

Diag.MPMeshZ 2
General.NumberOfSpecies 1
%block ChemicalSpeciesLabel
1 28.086 Si
%endblock

The parameters above should be relatively self-explanatory; the grid cutoff (in Hartrees) sets the integration grid spac-
ing, and can be compared to the charge density grid cutoff in a plane wave code (typically four times larger than the
plane wave cutoff). The Monkhorst-Pack k-point mesh (Diag.MPMeshX/Y/Z) is a standard feature of solid state codes;
note that the grid can be forced to be centred on the Gamma point.

The most important parameters set the number of species and give details of what the species are
(ChemicalSpeciesLabel). For each species label (in this case Si) there should be a corresponding file with the
extension .ion (again, in this case Si.ion). CONQUEST will read the necessary information from this file for default
operation, so no further parameters are required. This block also allows the mass of the elements to be set (particularly
important for molecular dynamics runs).

The output file starts with a summary of the calculation requested, including parameters set, and gives details of papers
that are relevant to the particular calculation. After brief details of the self-consistency, the total energy, forces and
stresses are printed, followed by an estimate of the memory and time required. For this calculation, these should be
close to the following:

Harris-Foulkes Energy : -33.792210321858057 Ha

Atom X Y Z
1 -0.0000000000 0.0000000000 0.0000000000
2 -0.0000000000 0.0000000000 0.0000000000
3 -0.0000000000 0.0000000000 -0.0000000000
4 0.0000000000 0.0000000000 0.0000000000
5 -0.0000000000 0.0000000000 -0.0000000000
6 0.0000000000 0.0000000000 0.0000000000
7 -0.0000000000 0.0000000000 0.0000000000
8 -0.0000000000 -0.0000000000 0.0000000000

Maximum force : 0.00000000(Ha/a0) on atom, component 2 3

X Y Z
Total stress: -0.01848219 -0.01848219 -0.01848219 Ha

Total pressure: 0.48902573 0.48902573 0.48902573 GPa

The output file ends with an estimate of the total memory and time used.

You might like to experiment with the grid cutoff to see how the energy converges (note that the number of grid
points is proportional to the square root of the energy, while the spacing is proportional to one over this, and that the
computational effort will scale with the cube of the number of grid points); as with all DFT calculations, you should
ensure that you test the convergence with respect to all parameters.

Go to top.
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1.5.2 Relaxation

Atomic Positions

We will explore structural optimisation of the methane molecule (a very simple example). The coordinates required
are:

20.000 0.000 0.000
0.000 20.000 0.000
0.000 0.000 20.000
5
0.500 0.500 0.500 1 F F F
0.386 0.500 0.500 2 T F F
0.539 0.607 0.500 2 T T F
0.537 0.446 0.593 2 T T T
0.537 0.446 0.407 2 T T T

The size of the simulation cell should, of course, be tested carefully to ensure that there are no interactions between
images. We have fixed the central (carbon) atom, and restricted other atoms to prevent rotations or translations during
optimisation.

The Conquest_input file changes only a little from before, as there is no need to specify a reciprocal space mesh
(it defaults to gamma point only, which is appropriate for an isolated molecule). We have set the force tolerance
(AtomMove.MaxForceTol) to a reasonable level (approximately 0.026 eV/A). Note that the ion files can be generated
in the same way as before, and that we assume that the ion files are renamed to C.ion and H.ion.

IO.Coordinates CH4.in
Grid.GridCutoff 50

AtomMove.TypeOfRun lbfgs
AtomMove.MaxForceTol 0.0005

General.NumberOfSpecies 2
%block ChemicalSpeciesLabel
1 12.00 C
2 1.00 H
%endblock

The progress of the optimisation can be followed by searching for the string Geom (using grep or something similar).
In this case, we find:

GeomOpt - Iter: 0 MaxF: 0.04828504 E: -0.83676760E+01 dE: 0.00000000
GeomOpt - Iter: 1 MaxF: 0.03755566 E: -0.83755762E+01 dE: 0.00790024
GeomOpt - Iter: 2 MaxF: 0.02691764 E: -0.83804002E+01 dE: 0.00482404
GeomOpt - Iter: 3 MaxF: 0.00613271 E: -0.83860469E+01 dE: 0.00564664
GeomOpt - Iter: 4 MaxF: 0.00126136 E: -0.83862165E+01 dE: 0.00016958
GeomOpt - Iter: 5 MaxF: 0.00091560 E: -0.83862228E+01 dE: 0.00000629
GeomOpt - Iter: 6 MaxF: 0.00081523 E: -0.83862243E+01 dE: 0.00000154
GeomOpt - Iter: 7 MaxF: 0.00073403 E: -0.83862303E+01 dE: 0.00000603
GeomOpt - Iter: 8 MaxF: 0.00084949 E: -0.83862335E+01 dE: 0.00000316
GeomOpt - Iter: 9 MaxF: 0.00053666 E: -0.83862353E+01 dE: 0.00000177
GeomOpt - Iter: 10 MaxF: 0.00033802 E: -0.83862359E+01 dE: 0.00000177

The maximum force reduces smoothly, and the structure converges well. By adjusting the output level (using IO.
Iprint for overall output, or IO.Iprint_MD for atomic movement) more information about the structural relaxation

10 Chapter 1. Getting Started
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can be produced (for instance, the force residual and some details of the line minimisation will be printed for IO.
Iprint_MD 2).

Go to top.

Cell Parameters

We will optimise the lattice constant of the bulk silicon cell that we studied for the static calculation. Here we need to
change the type of run, and add one more line:

AtomMove.TypeOfRun cg
AtomMove.OptCell T

Adjust the simulation cell size to 10.26 Bohr radii in all three directions (to make it a little more challenging). If you
run this calculation, you should find a final lattice constant of 10.372 after 3 iterations. The progress of the optimization
can be followed in the same way as for structural relaxation, and gives:

GeomOpt - Iter: 0 MaxStr: 0.00011072 H: -0.33790200E+02 dH: 0.00000000
GeomOpt - Iter: 1 MaxStr: 0.00000195 H: -0.33792244E+02 dH: 0.00204424
GeomOpt - Iter: 2 MaxStr: 0.00000035 H: -0.33792244E+02 dH: -0.00000017

Go to top.

1.5.3 Simple Molecular Dynamics

We will perform NVE molecular dynamics for methane, CH4, as a simple example of how to do this kind of calculation.
You should use the same coordinate file and ion files as you did for the structural relaxation, but change the atomic
movement flags in the coordinate file to allow all atoms to move (the centre of mass is fixed during MD by default).
Your coordinate file should look like this:

20.00000000000000 0.00000000000000 0.00000000000000
0.00000000000000 20.00000000000000 0.00000000000000
0.00000000000000 0.00000000000000 20.00000000000000
5
0.500 0.500 0.500 1 T T T
0.386 0.500 0.500 2 T T T
0.539 0.607 0.500 2 T T T
0.537 0.446 0.593 2 T T T
0.537 0.446 0.407 2 T T T

The input file should be:

IO.Coordinates CH4.in

AtomMove.TypeOfRun md
AtomMove.IonTemperature 300
AtomMove.NumSteps 100

General.NumberOfSpecies 2
%block ChemicalSpeciesLabel
1 12.00 C
2 1.00 H
%endblock

1.5. Example calculations 11



CONQUEST Documentation, Release 1.0.7-pre

where the default timestep (0.5fs) is necessary for simulations involving light atoms like hydrogen. The file md.stats
contains details of the simulation, while the trajectory is output to trajectory.xsf which can be read by VMD
among other programs. In this simulation, the conserved quantity is the total energy (the sum of ionic kinetic energy
and potential energy of the system) which is maintained to better than 0.1mHa in this instance. More importantly, the
variation in this quantity is much smaller than the variation in the potential energy. This can be seen in the plot below.

Go to top.

1.5.4 Tutorials

We recommend that you work through, in order, the tutorials included in the distribution in the tutorials/ directory
to become familiar with the modes of operation of the code.

NOTE In the initial pre-release of CONQUEST (January 2020) we have not included the tutorials; they will be added
over the coming months.

Go to top.

1.5.5 Where next?

While the tutorials have covered the basic operations of Conquest, there are many more subtle questions and issues,
which are given in the User Guide.

Go to top.
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TWO

USER GUIDE

• Input and output

• Finding the ground state

• Converging Parameters

• Basis sets

• Electronic Structure

• Structural relaxation

• Molecular Dynamics

• Post-processing CONQUEST output

• External tools

• Managing Conquest with ASE

• Error codes

• Input tags

2.1 Input and output

2.1.1 Input files

Conquest_input

All necessary input parameters should be specified in the Conquest_input file, including the names of the coordinate
file and the ion files. This file controls the run; there are many sensible default values for input parameters, but you
should ensure that you understand what they mean. After a run, the full set of relevant input parameters (whether
specified by the user, or default, are available in the file input.log).

The most common input tags are listed briefly here. Full documentation can be found in Input tags.

• AtomMove.TypeOfRun takes static, md, sqnm, cg

• IO.Coordinates File name

• IO.Iprint 0-3 (controls amount of output)* DM.SolutionMethod diagon

– Diag.MPMesh T/F

– Diag.MPMeshX (and Y and Z) N

– Diag.GammaCentred T/F

13
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• Grid.GridCutoff Energy in Ha (sets a grid spacing 𝛿𝑥 = 𝜋/
√
2𝐸 for cutoff E in Ha)

• AtomMove.NumSteps N

• AtomMove.MaxForceTol in Ha/bohr

• AtomMove.OptCell T/F (optimises simulation cell size)

• General.NumberOfSpecies N

• %block ChemicalSpeciesLabel Block specifying element number, mass and ion file name

• IO.FractionalAtomicCoords T/F

• Spin.SpinPolarised T/F

– Spin.FixSpin T/F

– Spin.Magn Difference between spin channel occupations

• minE.SCTolerance Fractional tolerance on magnitude of residual divided by number of electrons

• SC.KerkerPreCondition T/F (for Kerker preconditioning of SCF)

• SC.MaxIters N (maximum number of SCF iterations)

Go to top

Ion files

The ion files contain data on the different species being modelled: valence charge, pseudopotentials, pseudo-atomic
orbitals (PAOs) etc. Full details on how the PAOs are used as basis functions for CONQUEST can be found in the
manual section on basis sets. A utility for generating these files is provided with CONQUEST, but Siesta ion files can
also be read. The CONQUEST utility uses the pseudopotentials generated by the ONCVPSP code (though note that to
generate new files for CONQUEST, you will need a small patch).

A set of input files for all elements in the PseudoDojo library for the LDA, PBE and PBEsol exchange-correlation
functionals is provided in the directory pseudo-and-pao. This will allow you to generate ion files for these elements
easily.

The utility for generating ion files is called MakeIonFiles, and its source code is found in the tools/BasisGeneration
directory. It uses the same system.make file as CONQUEST, and following compilation the executable will be moved
to the bin directory. The input file is Conquest_ion_input, and the key parameters to be set for the ion file generation
are:

• General.NumberOfSpecies to specify number of species

• %block SpeciesLabels to specify what the species are

• In the species block (set with %block XX for species XX):

– Atom.PseudopotentialFile to specify the input file for the ONCVPSP code

– Atom.VKBFile to specify the file that CONQUEST needs to read (included in the library of inputs, and
generally named XX.pot for species XX)

– Atom.BasisSize to specify the size of the basis; at present this can take the values: minimal; small;
medium; and large.

These are all included in the default input files. Further fine-grained control can be applied to the basis functions; this
will be documented after the pre-release of CONQUEST.

Go to top
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Coordinates

The coordinates are specified in a separate file with relatively simple format. The coordinates can be specified in
fractional form (default) or cartesian (set the input tag IO.FractionalAtomicCoords T). Distance units can be Bohr
radii (default) or Angstroms (set the input tag General.DistanceUnits to Ang). At present, CONQUEST only
handles orthorhombic unit cells.

The coordinate file is formatted as follows:

a 0.0 0.0
0.0 b 0.0
0.0 0.0 c
NAtoms
x y z species MoveX MoveY MoveZ
.
.
.

Note that the flags MoveX etc take values T/F and indicate whether atoms are free to move in x, y and z, respec-
tively. The flag species is an integer, and selects based on species defined in the atomic specification section of the
Conquest_input file.

Go to top

2.1.2 Output files

Main output

By default, CONQUEST writes output to the Conquest_out file (though the filename can be set with the parameter
IO.OutputFile, and the flag IO.WriteOutToFile (T/F) selects output to file or stdout). This file contains all
details of the calculation, including energies, forces and information on the different stages of the calculation. The
output verbosity is controlled by the IO.Iprint family of parameters, which allows different levels of output detail to
be set for different areas of the code. For production runs, we expect IO.Iprint 0 to give sufficient detail; IO.Iprint
3 provides a level of detail that would normally only be needed for debugging.

Warnings from the calculation (including indications that the convergence should be improved, and technical issues)
are written to the Conquest_warnings file, which should be checked after each run. The warnings are also written to
the output file at certain IO.Iprint levels.

Go to top

Electronic structure

Different electronic structure outputs are available; in each case, the key output flag is given. Further output flags are
described in Input tags.

• Charge density

• Band-resolved charge density (IO.outputWF)

• Density of states (IO.writeDOS)

• Atom-projected density of states (IO.write_proj_DOS)

• Atomic charges, using the Mulliken approach (IO.AtomChargeOutput)

2.1. Input and output 15
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The Kohn-Sham eigenvalues are output in the eigenvalues.dat file. The charge densities need post-processing to
convert from the standard output format to a file compatible with visualisation (current supported formats include
Gaussian CUBE file and OpenDX files).

Note that Becke charges can be calculated if the following parameters are set:

SC.BeckeWeights T
SC.BeckeAtomicRadii T
IO.Iprint_SC 3

This method of output will be refined soon.

Go to top

Atomic structure

During structural relaxation and molecular dynamics, the atomic structure at the end of each step is saved in the output
file coord_next.dat. This is in the same format as the input.

Go to top

Molecular dynamics

A molecular dynamics run will generate a number of additional plain text output files:

• md.stats— summarises thermodynamic quantities at each steps

• md.frames— contains the complete physical state of the system (lattice parameters, atomic positions, velocities,
forces, stress).

• md.checkpoint— data required for MD restart, namely atomic velocities and extended system variables.

• md.positions— Atomic coordinates saved at the moment of checkpointing

• trajectory.xsf— atomic coordinates save in .xsf format, which can be visualised using (for example) VMD,
if AtomMove.WriteXSF is true..

Full details are available in Molecular Dynamics.

Go to top

2.2 Finding the ground state

Finding the electronic ground state is the heart of any DFT code. In CONQUEST, we need to consider several linked
stages: the density matrix (found using diagonalisation or linear scaling); self-consistency between charge and poten-
tial; and the support functions (though these are not always optimised).

The basis functions in CONQUEST are support functions (localised functions centred on the atoms), written as 𝜑𝑖𝛼(r)
where 𝑖 indexes an atom and 𝛼 a support function on the atom. The support functions are used as basis functions for
the density matrix and the Kohn-Sham eigenstates:

𝜓𝑛k(r) =
∑︁
𝑖𝛼

𝑐𝑛k𝑖𝛼 𝜑𝑖𝛼(r)

𝜌(r, r′) =
∑︁
𝑖𝛼𝑗𝛽

𝜑𝑖𝛼(r)𝐾𝑖𝛼,𝑗𝛽𝜑𝑗𝛽(r
′)
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where 𝑛 is an eigenstate index and k is a point in the Brillouin zone (see here for more on this). The total energy can
be written in terms of the density matrix, as:

𝐸𝐾𝑆 = Tr[𝐻𝐾] + ∆𝐸𝐻𝑎𝑟 +∆𝐸𝑋𝐶

for the Hamiltonian matrix 𝐻 in the basis of support functions, with the last two terms the standard Harris-Foulkes
[G1, G2] correction terms.

For diagonalisation, the density matrix is made from the coefficients of the Kohn-Sham eigenstates, 𝑐𝑛k𝑖𝛼 , while for
linear scaling it is found directly during the variational optimisation of the energy.

The question of whether to find the density matrix via diagonalisation or linear scaling is a complex one, depending
on the system size, the accuracy required and the computational resources available. The simplest approach is to test
diagonalisation before linear scaling.

2.2.1 Diagonalisation

Exact diagonalisation in CONQUEST uses the ScaLAPACK library which scales reasonably well in parallel, but be-
comes less efficient with large numbers of processes. The computational time will scale as 𝑁3 with the number of
atoms 𝑁 , but will probably be more efficient than linear scaling for systems up to a few thousand atoms. (Going
beyond a thousand atoms with diagonalisation is likely to require the multi-site support function technique.)

To choose diagonalisation, the following flag should be set:

DM.SolutionMethod diagon

It is also essential to test relevant parameters, as described below: the k-point grid in reciprocal space (to sample the
Brillouin zone efficiently); the occupation smearing approach; and the parallelisation of k-points.

Go to top

Brillouin zone sampling

We need to specify a set of discrete points in reciprocal space to approximate integrals over the Brillouin zone. The
simplest approach is to use the Monkhorst-Pack approach [G3], where a grid of points is specified in all directions:

Diag.MPMesh T
Diag.MPMeshX 2
Diag.MPMeshY 2
Diag.MPMeshZ 2

This grid can be forced to be centred on the gamma point (often an important point) using the parameter Diag.
GammaCentred T. The origin of the Monkhorst-Pack grid may also be offset by an arbitrary vector from the origin of
the Brillouin zone, by specifying:

Diag.MPShiftX 0.0
Diag.MPShiftY 0.0
Diag.MPShiftZ 0.0

Alternatively, the points in reciprocal space can be specified explicitly by giving a number of points and their locations
and weights:

Diag.NumKpts 1

%block Diag.Kpoints
(continues on next page)
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(continued from previous page)

0.00 0.00 0.00 1.00
%endblock Diag.Kpoints

where there must be as many lines in the block as there are k-points. It is important to note that CONQUEST does not
consider space group symmetry when integrating over the Brillouin zone.

Go to top.

K-point parallelization

It is possible to parallelise over k-points: to split the processes into sub-groups, each of which is responsible for a
sub-set of the k-points. This can be very efficient, and is specified by the parameter Diag.KProcGroups N, where it is
important that the number of processes is an integer multiple of the number of groups N. It will be most efficient when
the number of k-points is an integer multiple of the number of groups.

Go to top.

Electronic occupation smearing

The occupation numbers of the eigenstates are slightly smeared near the Fermi level, following common practice.
The default smearing type is Fermi-Dirac smearing with a temperature (in Hartrees) set with the flag Diag.kT which
defaults to 0.001Ha.

The Methfessel-Paxton approach [G4] to occupations allows much higher smearing temperatures with minimal effect
on the free energy (and hence accuracy) of the energy. This generally gives a similar accuracy with fewer k-points, and
is selected as:

Diag.SmearingType 1
Diag.MPOrder 0

where Diag.MPOrder specifies the order of the Methfessel-Paxton expansion. It is recommended to start with the
lowest order and increase gradually, testing the effects.

Go to top.

Padding Hamiltonian matrix by setting block size

With the default setting, the size of Hamiltonian and overlap matrices is determined by the total number of support
functions. It can be a prime number and timing of diagonalisation can be very slow in such cases, since the division of
the matrix into small pieces is difficult.

By padding, we can change the size of Hamiltonian matrix to improve the efficiency of the diagonalisation. To set an
appropriate value for the block size of the matrix, specify the following two variables.

Diag.BlockSizeR 20
Diag.BlockSizeC 20

Note that these two numbers should be the same when padding (and when using ELPA which will be introduced to
CONQUEST soon). We suggest that an appropriate value is between 20 and 200, but this should be tested.

The option for padding was introduced after v1.2, and if you would like to remove it, set the following variable.

Diag.PaddingHmatrix F

Go to top.
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2.2.2 Linear Scaling

A linear scaling calculation is selected by setting DM.SolutionMethod ordern. There are two essential parameters
that must be set: the range of the density matrix, and the tolerance on the optimisation.

DM.L_range 16.0
minE.Ltolerance 1.0e-6

The tolerance is applied to the residual (the RMS value of the gradient of the energy with respect to the density matrix).
The maximum number of iterations in the density matrix optimisation can be set with DM.LVariations (default 50).

At present, CONQUEST can only operate efficiently in linear scaling mode with a restricted number of support func-
tions (though this is an area of active development). PAO basis sets of SZ and SZP size (minimal and small in the
ion file generator) will run without restrictions. For larger PAO basis sets, the OSSF approach must be used, and is
effective. With a blip basis there are no restrictions, though efficient optimisation is still under active development.

It is almost always more efficient to update the charge density while optimising the density matrix, avoiding the need
for a separate self-consistency loop. This is set by choosing minE.MixedLSelfConsistent T.

An essential part of a linear scaling calculation is finding the approximate, sparse inverse of the overlap matrix. Nor-
mally this will happen automatically, but it may require some tests. The key parameters are the range for the inverse
(see the Atomic Specification block, and specifically the Atomic Specification block) and the tolerance applied to the
inversion.

Atom.InvSRange R
DM.InvSTolerance R

A tolerance of up to 0.2 can give convergence without significantly affecting the accuracy. The range should be similar
to the radius of the support functions, though increasing it by one or two bohr can improve the inversion in most cases.

The input tags are mainly found in the Density Matrix section of the Input tags page.

Go to top.

2.2.3 Self-consistency

The normal mode of operation for CONQUEST involves an iterative search for self-consistency between the potential
and the charge density. However, it is also possible to run in a non-self-consistent manner, either with a converged
charge density for electronic structure analysis, or for dynamics, which will be considerably more efficient than a self-
consistent calculation, but less accurate.

Self consistency is set via the following parameters:

minE.SelfConsistent T
minE.SCTolerance 1E-7
SC.MaxIters 50

The tolerance is applied to the RMS value of the residual, 𝑅(r) = 𝜌𝑜𝑢𝑡(r)− 𝜌𝑖𝑛(r), integrated over all space:

𝑅𝑅𝑀𝑆 =

√︃
Ω
∑︁
𝑙

(𝑅(r𝑙))
2

where r𝑙 is a grid point and Ω is the grid point volume (integrals are performed on a grid explained in Integration Grid).
The maximum number of self-consistency cycles is set with SC.MaxIters, defaulting to 50.

For non-self-consistent calculations, the main flag should be set as minE.SelfConsistent F. The charge density at
each step will either be read from a file (if the flag General.LoadRho T is set), or constructed from a superposition
of atomic densities. The Harris-Foulkes functional will be used to find the energy.

2.2. Finding the ground state 19
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Go to top.

Restarting SCF

The SCF cycle can be restarted from a previous density matrix or charge density, which may significantly speed up
convergence. The density matrix is automatically written out in the files Kmatrix2.* or Lmatrix2.* (depending on
whether diagonalisation or linear scaling is being used). These files are read in, and the initial charge density made
from them by setting the flags:

General.LoadDM T
SC.MakeInitialChargeFromK T

The charge density is not written out by default; this can be changed by setting IO.DumpChargeDensity T which
results in the files chden.nnn being created. To read these in as the initial charge density, the flag General.LoadRho
T should be set.

Go to top.

Advanced options

Instabilities during self-consistency are a well-known issue in electronic structure calculations. CONQUEST performs
charge mixing using the Pulay approach, where the new charge density is prepared by combining the charge densities
from a number of previous iterations. In general, we write:

𝜌𝑖𝑛𝑛+1 =
∑︁
𝑖

𝛼𝑖

[︀
𝜌𝑖𝑛𝑖 +𝐴𝑅𝑖

]︀
where 𝑅𝑖 is the residual at iteration 𝑖, defined above. The fraction of the output charge density that is included is
governed by the variable𝐴, which is set by the parameter SC.LinearMixingFactor (default 0.5). If there is instability
during the self consistency, reducing 𝐴 can help (though will likely make convergence a little slower).

It is also advisable to apply Kerker preconditioning to the residual when the system is large in any dimension. This
removes long wavelength components of the residual, reducing charge sloshing. This is controlled with the following
parameters:

SC.KerkerPreCondition T
SC.KerkerFactor 0.1

where the Kerker factor gives the wavevector at which preconditioning starts to reduce. The Kerker preconditioning is
applied to the Fourier transform of the residual, �̃� as:

�̃�
𝑞2

𝑞2 + 𝑞20

where 𝑞20 is the square of the Kerker factor and 𝑞 is a wavevector. You should test values of 𝑞0 around 𝜋/𝑎 where 𝑎 is
the longest dimension of the simulation cell (or some important length scale in your system).

Go to top.

20 Chapter 2. User Guide



CONQUEST Documentation, Release 1.0.7-pre

2.2.4 Support functions

Support functions in CONQUEST represent the density matrix, and can be simple (pseudo-atomic orbitals, or PAOs)
or compound, made from simple functions (either PAOs or blips). If they are compound, made from other functions,
then the search for the ground state involves the construction of this representation. Full details of how the support
functions are built and represented can be found in the manual section on basis sets.

Go to top

2.2.5 Charged systems

CONQUEST uses periodic boundary conditions, which require overall charge neutrality. However, charged systems
can be modelled: if an excess of electrons is specified by the user, a uniform positive background charge is added
automatically to restore overall neutrality. At present, there are no correction schemes implemented, so it is important
to test the convergence of the energy with unit cell size and shape. Electrons are added by setting the parameter
General.NetCharge.

General.NetCharge 1.0

This gives the number of extra electrons to be added to the unit cell, beyond the valence electrons.

Go to top.

2.2.6 Spin polarisation

CONQUEST performs collinear spin calculations only. A spin-polarised calculation is performed by setting the pa-
rameter Spin.SpinPolarised to T.

Users need to specify either the total initial number of spin-up and spin-down electrons in the simulation cell (using
the parameters Spin.NeUP and Spin.NeDN), or the difference between the number of spin-up and spin-down electrons
(using the parameter Spin.Magn).

The number of electrons for each spin channel can be fixed during SCF calculations by setting the parameter Spin.
FixSpin to T (default is F).

It is possible to specify the spin occupation in the atomic charge densities (i.e. the number of spin-up and spin-down
electrons used to build the density). This is done in the Atomic Specification part of the Conquest_input file. Within
the atom block for each species, the numbers of electrons should be set with Atom.SpinNeUp and Atom.SpinNeDn.
Note that these numbers must sum to the number of valence electrons for the atom.

Go to top.

Examples: FM and AFM iron

A two atom ferromagnetic iron simulation might be set up using the parameters below. Note that the net spin here is
S=1 𝜇𝐵 (i.e. two more electrons in the up channel than in the down), and that the net spin is not constrained.

# example of ferro bcc Fe
Spin.SpinPolarised T
Spin.FixSpin F
Spin.NeUP 9.0 # initial numbers of up- and down-spin electrons,
Spin.NeDN 7.0 # which will be optimised by a SCF calculation when Spin.FixSpin=F

%block ChemicalSpeciesLabel
(continues on next page)
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(continued from previous page)

1 55.845 Fe
%endblock ChemicalSpeciesLabel

An equivalent anti-ferromagnetic calculation could be set up as follows (though note that the initial specification of
spin for the atoms does not guarantee convergence to an AFM ground state). By defining two species we can create
spin-up and spin-down atoms (note that both species will require their own, appropriately labelled, ion file).

# example of anti-ferro bcc Fe
Spin.SpinPolarised T
Spin.FixSpin F
Spin.NeUP 8.0 # initial numbers of up- and down-spin electrons in an unit cell
Spin.NeDN 8.0 # are set to be the same

%block ChemicalSpeciesLabel
1 55.845 Fe1
2 55.845 Fe2
%endblock ChemicalSpeciesLabel

%block Fe1 # up-spin Fe
Atom.SpinNeUp 5.00
Atom.SpinNeDn 3.00
%endblock Fe1
%block Fe2 # down-spin Fe
Atom.SpinNeUp 3.00
Atom.SpinNeDn 5.00
%endblock Fe2

When using multi-site or on-site support functions in spin-polarised calculations, the support functions can be made
spin-dependent (different coefficients for each spin channel) or not by setting Basis.SpinDependentSF (T/F, default
is T).

Go to top.
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2.3 Converging Parameters

There are various important parameters in CONQUEST that affect the convergence of the total energy, and need to be
tested. Integrals are calculated on a grid; the density matrix is found approximately; a self-consistent charge density is
calculated; and support functions are, in some modes of operations, optimised. These parameters are described here.

2.3.1 Integration Grid

While many integrals are calculated analytically or on fine grids that move with the atoms, there are still some integrals
that must be found numerically, and CONQUEST uses an orthorhombic, uniform grid to evaluate these integrals (this
grid is also used for the Fourier transforms involved in finding the Hartree potential). The spacing of the grid will affect
the accuracy of the calculation, and it is important to test the convergence of the total energy with the grid spacing.

The grid spacing can be set intuitively using an energy (which corresponds to the kinetic energy of the shortest wave-
length wave that can be represented on the grid). In atomic units, 𝐸 = 𝑘2/2 with 𝑘 = 𝜋/𝛿 for grid spacing 𝛿. The
cutoff is set with the parameter:
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Grid.GridCutoff E

where E is an energy in Hartrees. The grid spacing can also be set manually, by specifying the number of grid points
in each direction:

Grid.PointsAlongX N
Grid.PointsAlongY N
Grid.PointsAlongZ N

If setting the grid in this manner, it is important to understand a little more about the internal workings of CONQUEST.
The grid is divided up into blocks (the default size is 4 by 4 by 4), and the number of grid points in any direction must
correspond to an integer multiple of the block size in that direction. The block size can be set by the user:

Grid.InBlockX N
Grid.InBlockY N
Grid.InBlockZ N

Note that the blocks play a role in parallelisation and memory use, so that large blocks may require larger memory per
process; we recommend block sizes no larger than 8 grid points in each direction. There is also, at present, a restriction
on the total number of grid points in anuy direction, that it must have prime factors of only 2, 3 and 5. This will be
removed in a future release.

Go to top.

2.3.2 Finding the density matrix

As discussed in the section on finding the ground state, the density matrix is found either with exact diagonaliation, or
the linear scaling approach. These two methods require different convergence tests, and are described separately.

Diagonalisation: Brillouin Zone Sampling

The sampling of the Brillouin zone must be tested for convergence, and the parameters are described here. The conver-
gence of charge density will be faster than detailed electronic structure such as density of states (DOS), and it will be
more accurate for these types of calculations to generate a converged charge density, and then run non self-consistently
(see the section on self consistency) with appropriate k-point sampling.

Go to top.

Linear Scaling

The range applied to the density matrix (DM.L_range) determines the accuracy of the calculation, as well as the
computational time required (as the number of non-zero elements will increase based on a sphere with the radius of
the range, the time will increase roughly proportional to the cube of the range). In almost all circumstances, it is best
to operate with a range which converges energy differences and forces, rather than the absolute energy. Testing for this
convergence is an essential part of the preparation for production calculations.

The tolerance applied to the density matrix optimisation (minE.Ltolerance) must be chosen to give adequate con-
vergence of the energy and forces. The tolerance is applied to the residual in the calculation, defined as:

𝑅 =

√︃∑︁
𝑖𝛼𝑗𝛽

𝜕𝐸/𝜕𝐿𝑖𝛼𝑗𝛽 · 𝜕𝐸/𝜕𝐿𝑖𝛼𝑗𝛽

The dot product uses the inverse of the overlap matrix as the metric.
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The approximate, sparse inversion of the overlap matrix is performed before the optimisation of the density matrix.
The method used, Hotelling’s method (a version of a Newton-Raphson approach) is iterative and terminates when the
characteristic quantity Ω increases. On termination, if Ω is below the tolerance DM.InvSTolerance then the inverse
is accepted; otherwise it is set to the identity (the density matrix optimisation will proceed in this case, but is likely to
be inefficient). We define:

Ω = (𝑇𝑟[𝐼 − 𝑇𝑆])2

where 𝑇 is the approximate inverse. The range for the inverse must be chosen (Atom.InvSRange in the species block);
by default it is same as the support function range (which is then doubled to give the matrix range) but can be increased.
The behaviour of the inversion with range is not simple, and must be carefully characterised if necessary.
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2.3.3 Self-consistency

The standard self-consistency approach uses the Pulay RMM method, and should be robust in most cases. It can be
monitored via the residual, which is currently defined as the standard RMS difference in charge density:

𝑅 =

√︃∫︁
dr | 𝜌𝑜𝑢𝑡(r)− 𝜌𝑖𝑛(r) |2

where 𝜌𝑖𝑛 is the input charge density for an iteration, and 𝜌𝑜𝑢𝑡 is the resulting output charge density. The SCF cycle is
terminated when this residual is less than the parameter minE.SCTolerance. The maximum number of iterations is
set with SC.MaxIters (defaults to 50).

There are various further approaches and parameters which can be used if the SCF cycle is proving hard to con-
verge. As is standard, the input for a given iteration is made by combining the charge density from a certain
number of previous steps (SC.MaxPulay, default 5). The balance between input and output charge densities from
these previous steps is set with SC.LinearMixingFactor (default 0.5; N.B. for spin polarised calculations, SC.
LinearMixingFactor_SpinDown can be set separately). Reducing this quantity may well improve stability, but slow
down the rate of convergence.

Kerker-style preconditioning (damping long wavelength charge variations) can be selected using SC.
KerkerPreCondition T (this is most useful in metallic and small gap systems). The preconditioning is a
weighting applied in reciprocal space:

𝐾 =
1

1 + 𝑞20/𝑞
2

where 𝑞0 is set with SC.KerkerFactor (default 0.1). This is often very helpful with slow convergence or instability.
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2.3.4 Support Functions

The parameters relevant to support functions depend on the basis set that is used. In the case of pseudo-atomic orbitals
(PAOs), when support functions are primitive PAOs, the only relevant parameter is the basis set size, which is set when
the ion files are generated. It is important to test the accuracy of a given basis set carefully for the problem that is to be
modelled.

When using multi-site support functions (MSSF), the key parameter is the radius of the MSSF (Atom.
MultisiteRange in the atomic specification block). As this is increased, the accuracy of the calculation will also
increase, but with increased computational effort. Full details of the MSSF (and related OSSF) approach are given in
the section on multi-site support functions.
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For the blip basis functions, the spacing of the grid where the blips are defined is key (Atom.SupportGridSpacing in
the atomic specification block), and is directly related to an equivalent plane wave cutoff (via 𝑘𝑏𝑔 = 𝜋/𝛿 and 𝐸𝑃𝑊 =
𝑘2𝑏𝑔/2, where 𝛿 is the grid spacing in Bohr radii and 𝐸𝑃𝑊 is in Hartrees). For a particular grid spacing, the energy
will converge monotonically with support function radius (Atom.SupportFunctionRange in the atomic specification
block). A small support function radius will introduce some approximation to the result, but improve computational
performance. It is vital to characterise both blip grid spacing and support function radius in any calculation. A full
discussion of the blip function basis is found here.
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2.4 Basis sets

As we have mentioned in finding the ground state, the density matrix is represented by support functions. These, in
turn, are made up of basis functions, and the choice of basis set and how it represents the support functions affects both
the accuracy and performance of a calculation.

There are two kinds of basis functions which are used in CONQUEST to represent the support functions: pseudo-atomic
orbitals (keyword PAOs) which are the default; and b-splines (keyword blips) which allow systematic convergence at
the expense of greater complexity.

The basis set is selected as follows:

Basis.BasisSet PAOs

When the basis set is taken to be PAOs, there are three different ways to construct the support functions, discussed
below:

• Each support function is represented by a single PAO (primitive PAOs)

• Multi-site support functions, built from PAOs on several atoms

• on-site support functions, built from PAOs on one atom

Primitive PAOs are efficient for small systems. When using large PAO basis sets for systems containing more than
several hundred atoms, multi-site support functions and on-site support functions will be more efficient than primitive
PAOs.
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2.4.1 Pseudo-atomic orbitals (PAOs)

PAOs are solutions of the Schrodinger equation for isolated atoms, using pseudopotentials, with some confinement ap-
plied. They consist of radial functions multiplied by spherical harmonics. For the valence orbitals, the radial functions
are referred to as zeta (𝜁), while for unoccupied orbitals, they are termed polarisation.

A minimal PAO basis set is single-𝜁 (SZ), with one radial function for each angular momentum quantum number in the
valence electrons. While the cost is significantly lower than for other basis sets, the accuracy will be rather low.

The accuracy of a calculation can be improved by adding polarisation functions and multiple radial functions for dif-
ferent angular momentum values, though systematic improvement is rather difficult to achieve (this is straightforward
with a blip function basis). The PAO utility included with CONQUEST generates basis sets with differing sizes and
accuracies; full details of the performance of these basis sets can be found elsewhere [B1].

• minimal (single zeta, SZ)

• small (single zeta and polarisation, SZP)

• medium (double zeta, single polarisation, DZP)
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• large (triple zeta, double polarisation, TZDP)
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Primitive PAOs as support functions

The easiest way to prepare support functions is to use primitive PAOs as the support functions without any modi-
fications. In this case, the input parameters related to the support functions are automatically set by obtaining the
information from the PAO files (.ion files) so long as they are generated by the CONQUEST MakeIonFiles utility,
version 1.0.3 or later. No further input parameters need to be set in Conquest_input.
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Multi-site support functions

Since the computational cost of Conquest scales cubically with the number of support functions, contracting the PAOs
into a smaller set of support functions is an efficient way to reduce the computational cost when we use large multiple-𝜁
PAO basis sets. Multi-site support functions (MSSFs) [B2, B3] are constructed for each atom by taking linear com-
binations of the atom’s PAOs and the PAOs from neighbouring atoms within a certain range (set with the parameter
Atom.MultisiteRange in the atom specification block).

Multi-site support functions can be selected by setting the following parameters:

Basis.BasisSet PAOs
Basis.MultisiteSF T

Various other parameters need to be set in the atom specification block. The number of support functions for the atoms
must be set, and is normally equivalent to a minimal (single zeta) basis; it is set with Atom.NumberOfSupports. (To
use a number of support functions larger than this minimal number, the parameter Multisite.nonminimal needs to
be set to T.) The range for the multi-site support functions (the PAOs of any atom within this distance of the atom will be
included in the support functions) is set with Atom.MultisiteRange. The accuracy of the MSSF will improve as this
range is increased, though the computational cost will also increase; careful tests must be made to find an appropriate
range. For a minimal number of MSSF, the range must be large enough to include other atoms, though this restriction
can be removed (see on-site support functions for more details).

As well as setting the range for the MSSFs, we need to specify an approach for finding the expansion coefficients. A
reasonable set of MSSF coefficients can be found using the local filter diagonalization (LFD) method. For improved
accuracy, this should be followed by variational numerical optimisation.
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Local filter diagonalization (LFD)

In this method, which is selected by setting Multisite.LFD T, the MSSF coefficients are found by diagonalising the
Hamiltonian in the primitive PAO basis, for a small cluster of atoms surrounding the target atom. The MSSF coefficients
𝐶 are determined by projecting the sub-space molecular orbitals 𝐶𝑠𝑢𝑏 around each atom onto localized trial vectors 𝑡,

𝐶 = 𝐶𝑠𝑢𝑏𝑓(𝜀𝑠𝑢𝑏)𝐶
𝑇
𝑠𝑢𝑏𝑆𝑠𝑢𝑏𝑡

The cluster for diagonalisation must be at least as large as the MSSF range, but larger clusters tend to give better MSSF
coefficients (at the expense of an increased computational cost). The LFD sub-space region is determined for each
atom by setting Atom.LFDRange.

An example set of parameters for an MSSF calculation for bulk Si would be:
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Basis.BasisSet PAOs
Basis.MultisiteSF T
Multisite.LFD T

%block ChemicalSpeciesLabel
1 28.07 Si
%endblock

%block Si
Atom.NumberOfSupports 4
Atom.MultisiteRange 8.0
Atom.LFDRange 8.0
%endblock

When calculating binding energy curves or optimising cells, a change of lattice constant can suddenly bring a new set
of atoms within the range of the support functions. In this case, a smearing can be applied at the edges of the range, by
setting Multisite.Smear T. Further details are given below.

Some form of self-consistency between the MSSF and the charge density is required (as the MSSF will determine the
Hamiltonian and hence the output charge density). At present, this is performed as a complete SCF cycle for each set
of MSSF coefficients (though this is likely to be updated soon for improved efficiency). This is selected by default (but
can be turned off by setting the parameter Multisite.LFD.NonSCF T).

This iterative process is not variational, but is terminated when the absolute energy change between iterations is less
than Multisite.LFD.Min.ThreshE, or the residual (defined in self-consistency) is less than Multisite.LFD.Min.
ThreshD.

An example input block for this process would be as follows:

Multisite.LFD T
Multisite.LFD.Min.ThreshE 1.0e-6
Multisite.LFD.Min.ThreshD 1.0e-6

Go to top.

Numerical optimisation

The MSSF coefficients can also be optimised by minimizing the DFT energy with respect to the coefficients, in a
variational process. The threshold and the maximum iteration number of the numerical optimisation are specified by
minE.EnergyTolerance and minE.SupportVariations. The optimisation is based on the conjugate gradient (CG)
method, and the initial CG step size can be specified by minE.InitStep_paomin (default is 5.0).

minE.VaryBasis T
minE.EnergyTolerance 1.0e-6
minE.SupportVariations 30

The numerical optimisation provides more accurate coefficients than the LFD method but is usually more time consum-
ing. Therefore, it is generally better to start from good initial values, for example, the coefficients calculated by LFD.
When both Multisite.LFD and minE.VaryBasis are selected, the initial coefficients will be calculated by LFD and
the coefficients will then be optimised.

Basis.MultisiteSF T
Multisite.LFD T
minE.VaryBasis T
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If good initial coefficient values have been found in a previous calculation, reading these from files (the base name of
these files is SFcoeffmatrix2) and performing only the numerical optimisation is also a good choice.

Basis.LoadCoeffs T
Basis.MultisiteSF T
Multisite.LFD F
minE.VaryBasis T
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Advanced MSSF concepts

Smearing the edge of the support functions Here, we are concerned with changes of lattice constant which may bring
new atoms inside the support function range.

We can set the smearing-function type Multisite.Smear.FunctionType (default=1:Fermi-Dirac, 2=Error func-
tion), the center position of the function Multisite.Smear.Center (default is equal to the range of the support func-
tions), offset of the center position Multisite.Smear.Shift and the width of the Fermi-Dirac function Multisite.
Smear.Width (default=0.1).

Selecting states from the sub-space Here, we consider how to create the MSSF themselves from the results of the
sub-space diagonalisation.

The Fermi function 𝑓 with 𝜀𝑠𝑢𝑏 Multisite.LFD.ChemP and 𝑘𝑇 Multisite.LFD.kT in the equation removes the
effects of the subspace molecular orbitals in higher energy region. In default, 𝜀𝑠𝑢𝑏 is automatically set to the mean
value of the subspace HOMO and LUMO energies for each subspace. If users want to modify this, set Multisite.
LFD.UseChemPsub F and the 𝜀𝑠𝑢𝑏 value with Multisite.LFD.ChemP.

For the LFD trial functions 𝑡, when Atom.NumberOfSupports is equal to the number of SZ or single-zeta plus polar-
ization (SZP), the PAOs which have the widest radial functions for each spherical harmonic function are chosen as the
trial vectors automatically in default. When Atom.NumberOfSupports is equal to the number of SZP and Multisite.
nonminimal.offset is set, the other PAOs will have the weight in the trial vectors with the value of Multisite.
nonminimal.offset. The users can also provide the trial vectors from the input file using the LFDTrialVector
block

# Trial vectors of Au (element 1) and O (element 2) atoms.
# Au: 15 PAOs (DZP) -> 6 support functions, O: 13 PAOs (DZP) -> 4 support functions.
%block LFDTrialVector
# species sf npao s s x y z d1 d2 d3 d4 d5 d1 d2 d3 d4 d5 for Au

1 1 15 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 2 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
1 3 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
1 4 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
1 5 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
1 6 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
2 1 13 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 2 13 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 3 13 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
2 4 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

# species sf npao s s x y z x y z d1 d2 d3 d4 d5 for O
%endblock LFDTrialVector

The first, second and third columns correspond to the indices of species, support functions for each species, and the
number of PAOs for each species. The other columns provide the initial values of the trial vectors. For example, in the
first line in the above example, the second s PAO is chosen as the trial vector for the first support function of Au.
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Self-consistent LFD Two further conditions are applied to end the LFD self-consistency process. The maximum number
of iterations is set with Multisite.LFD.Min.MaxIteration. It is also possible, as the process is not variational, that
the energy can increase as well as decrease between iterations. If the energy increase is less than Multisite.LFD.
Min.ThreshEnergyRise (which defaults to ten times Multisite.LFD.Min.ThreshE) then convergence is deemed
to have been reached.

Go to top.

On-site support functions

On-site support functions (OSSF) are similar to multi-site support functions, but are linear combinations of PAOs only
on the target atom. In this case, Atom.MultisiteRange should be small enough not to include any neighboring atoms
(suggested values between 0.1 to 0.5). The number of support functions must be equivalent to the number of functions
in an SZP basis (if polarisation functions are in the basis set) or an SZ basis (if there are no polarisation functions).
The parameter Multisite.nonminimal should be set to true if polarisation functions are included.

The coefficients can be determined in the same was as for MSSF (with the LFD method and/or the numerical optimisa-
tion described above). It is likely that significant improvement in accuracy will be found with numerical optimisation.
It is also important to test the effect of the parameter Atom.LFDRange which should be large enough to include several
shells of neighbouring atoms.

The OSSF approach is most likely to be useful when linear scaling calculations with large basis sets are required. An
example set of parmeters is found below.

Basis.BasisSet PAOs
Basis.MultisiteSF T
Multisite.LFD T
Multisite.nonminimal T

minE.VaryBasis T

# example of Si
%block Si
Atom.NumberOfSupports 9
Atom.MultisiteRange 0.1
Atom.LFDRange 8.0
%endblock
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2.4.2 Blips

Blips (which are a type of piecewise continuous polynomial called a B-spline) [B4] are useful for very accurate cal-
culations, since the basis set can be systematically improved, in the same way as a planewave basis set. However, the
calculations can be expensive depending on the parameters, and the code for blip optimisation is under development.
The following description, and possible keywords, may change during development.

The blips are defined on a blip grid, which is a regular cubic grid centred on the atoms, which also moves with the
atoms. The basis set can be systematically improved, by increasing the support function radius and/or reducing the
spacing of the blip grids. (The support grid spacing, which defines the grid for the blips, is equivalent to a plane wave
cutoff; for a given support grid spacing the energy decreases variationally with support function radius.) For each
species, we need to provide these two parameters, as well as the number of support functions, which should have a
minimal basis size. (At present, the smallest blip-grid spacing is used for all species.)

For a given atom, we would set:
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%block atom
Atom.NumberOfSupports 4
Atom.SupportFunctionRange 6.0
Atom.SupportGridSpacing 0.3
%endblock

For each atomic species, an ion file with a minimal (SZ) basis set is required for the charge density and to initialise the
blips.

The blip-grid spacing is directly related to the cutoff energy of the wavefunctions in planewave calculations. For a
given cutoff energy 𝐸cutoff in Hartree, the blip-grid spacing should be 2𝜋√

2𝐸cutoff
in bohr. Note that the grid spacing of

integration grids (or FFT grids for the charge density) should be half the spacing of the blip grid, or smaller.

It is essential to optimise the support functions (blip coefficients) in the case of blips. The tolerance and maximum
number of iterations can be set with the following keywords:

minE.VaryBasis T
minE.EnergyTolerance 0.10E-07
minE.SupportVariations 30

It is not recommended, but if memory problems are encountered for very accurate blip calculations, you may
need to switch off the preconditioning procedure for length-scale ill conditioning by setting the parameter minE.
PreconditionBlips F
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2.4.3 Reading coefficients from files

The calculated linear-combination coefficients of the support functions are stored in SFcoeffmatrix2 files for PAOs or
blip_coeffs files for blips. Those files can be read by setting Basis.LoadCoeffs T in the subsequent calculations.

Go to top.

2.4.4 Basis Set Superposition Error

Basis set superposition error (BSSE) arises when the two monomer units come closer and the basis set localized on
one unit can act as diffuse functions for the electrons from the other unit, and therefore could be responsible for the
overestimation of the binding energy for the interacting systems. It is unlikely to affect blip basis calculations [B5].

To correct this BSSE, the Counterpoise (CP) correction method [B6] is used, where the artificial stabilization is con-
trolled by enabling the atoms in monomer calculations to improve their basis sets by including the basis sets from other
monomers (using so-called ghost atoms).

When systems A and B approach and make a new system AB, the typical interaction energy between A and B is
calculated as:

𝐸𝑖𝑛𝑡
𝐴𝐵 = 𝐸𝐴𝐵(𝐴𝐵)− 𝐸𝐴(𝐴)− 𝐸𝐵(𝐵).

where 𝐸𝐴𝐵(𝐴𝐵) is the energy of system AB and 𝐸𝐴(𝐴) and 𝐸𝐵(𝐵) are the energies of isolated A and B. The
lowerscript and parentheses correspond to the system and its structure, respectively.

Now, the estimate for the amount of artificial stabilization of A coming from the extra basis functions from B is:

𝐸𝐵𝑆𝑆𝐸
𝐴 = 𝐸𝐴�̄�(𝐴𝐵)− 𝐸𝐴(𝐴 in 𝐴𝐵),

where 𝐴 and �̄� are the ghost atoms, which have basis functions, but no potential or charge density. 𝐸𝐴�̄�(𝐴𝐵) is the
energy of system A with the basis sets from ghost-atom system B in the AB structure. 𝐸𝐴(𝐴 in 𝐴𝐵) is the energy
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of system A in the AB structure but without system B (neither basis functions nor atoms). Therefore, the subtraction
corresponds to how much system A is stabilized by the basis function of B.

Similarly, for monomer B,

𝐸𝐵𝑆𝑆𝐸
𝐵 = 𝐸𝐴𝐵(𝐴𝐵)− 𝐸𝐵(𝐵 in 𝐴𝐵),

Subtracting the BSSE part of A and B units from the typical interaction energy mentioned above, the counterpoise
corrected interaction energy without BSSE (𝐸𝑖𝑛𝑡,𝐶𝑃

𝐴𝐵 ) will be:

𝐸𝑖𝑛𝑡,𝐶𝑃
𝐴𝐵 = 𝐸𝑖𝑛𝑡

𝐴𝐵 − 𝐸𝐵𝑆𝑆𝐸
𝐴 − 𝐸𝐵𝑆𝑆𝐸

𝐵 .

Practically, to calculate𝐸𝐴�̄�(𝐴𝐵), the basis functions of B should be placed on atomic centers of B, however with zero
nuclear charge and mass. This can be performed in CONQUEST by specifying negative masses for the ghost atoms in
B in the block ChemicalSpeciesLabel of the input file:

%block ChemicalSpeciesLabel
1 1.01 A
2 -1.01 B

%endblock

Go to top.
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2.5 Electronic Structure

CONQUEST can be used to produce a wide variety of information on the electronic structure of different systems,
including: density of states (DOS) and atom-projected DOS (or pDOS); band-resolved charge density; band structure;
and electronic polarisation. Many of these are produced with the post-processing code using a converged charge
density. All of these (at present) require the exact diagonalisation approach to the ground state; linear scaling solutions
are not possible.

2.5.1 Converged charge density

In most cases (except polarisation) the data required is produced by a non-self-consistent calculation which reads in
a well-converged charge density. The convergence is mainly with respect to Brillouin zone sampling, but also self-
consistency (a tight tolerance should be used). The basic procedure is:

1. Perform a well-converged calculation, writing out charge density (ensure that the Brillouin zone is well sampled,
the SCF tolerance is tight (minE.SCTolerance) and that the flag IO.DumpChargeDensity T is set)

2. Perform a non-self-consistent calculation for the quantity desired (set minE.SelfConsistent F and General.
LoadRho T to read and fix the charge density) using an appropriate Brillouin zone sampling

3. Run the appropriate post-processing to generate the data

However, note that the charge density often converges much faster with respect to Brillouin zone sampling than the
detailed electronic structure, so the use of a non-self-consistent calculation is more efficient. Often it is most efficient
and accurate to use a very high density k-mesh for the final, non-SCF calculation, but a lower density k-mesh to generate
the charge density (which converges faster with respect to Brillouin zone sampling than DOS and other quantities).

Go to top.
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2.5.2 Density of states

The total density of states (DOS) is generated from the file eigenvalues.dat which is written by all diagonalisation
calculations. See density of states for details on parameters which can be set.

The atom-projected DOS resolves the total DOS into contributions from individual atoms using the pseudo-atomic or-
bitals, and can further decompose this into l-resolved or lm-resolved densities of states. It requires the wave-function co-
efficients, which will be generated by setting IO.write_proj_DOS T; further analysis is performed in post-processing.
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2.5.3 Band structure

The band structure along a series of lines in reciprocal space can be generated. See post-processing for more details.
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2.5.4 Band-resolved densities

A band-resolved density is the quantity | 𝜓𝑛(r) |2 for the 𝑛th Kohn-Sham eigenstate (we plot density because the
eigenstates are in general complex). It requires wavefunction coefficients which are generated by setting IO.outputWF
T. Full details are found in the band density section of the post-processing part of the manual.
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2.5.5 Electronic Polarisation

The electronic polarisation (the response of a material to an external electric field) can be calculated using the approach
of Resta [ES1] by setting the tag General.CalcPol T. The direction in which polarisation is found is set using the
tag General.PolDir (choosing 1-3 gives x, y or z, respectively, while choosing 0 gives all three directions, though
this is normally not recommended).

The Resta approach is a version of the modern theory of polarisation (MTP) (perhaps better known in the method of
King-Smith and Vanderbilt [ES2]) where the polarisation is found as:

P = − 𝑒L

𝜋𝑉
ImlndetS

S𝑚𝑛 = ⟨𝜓𝑚| exp 𝑖2𝜋r/𝐿|𝜓𝑛⟩

where L is a simulation cell length along an appropriate direction and 𝑉 is the simulation cell volume. This approach
is only valid in the large simulation cell limit, with Γ point sampling (e.g. for BaTiO3, a minimum of 3x3x3 formula
units is needed, though this is perhaps a little too small).

As with all calculations in the MTP, the only valid physical quantity is a change of polarisation between two con-
figurations. A very common quantity to calculate is the Born effective charge (BEC), which is defined as 𝑍*

𝑘,𝛼𝛽 =
𝑉 𝜕𝑃𝛼/𝜕𝑢𝑘,𝛽 for species 𝑘 and Cartesian directions 𝛼 and 𝛽. It is most easily calculated by finding the change in
polarisation as one atom (or one set of atoms in a sublattice) is moved a small amount.

Go to top.
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2.6 Structural relaxation

This section describes how to find the zero-Kelvin equilibrium atomic structure, given a starting structure with non-zero
forces and/or stresses. CONQUEST can employ a variety of algorithms to minimise energy with respect to atomic posi-
tions, including: stabilised quasi-Newton method (SQNM); L-BFGS; conjugate gradients (CG); and damped molecular
dynamics (both MDMin and FIRE approaches). The minimisation of energy or enthalpy with respect to cell vectors is
restricted to conjugate gradients at present, though L-BFGS will be implemented.

Setting AtomMove.WriteXSF T for all flavours of optimisation will dump the trajectory to the file trajectory.xsf,
which can be visualised using VMD and XCrysDen. Setting AtomMove.AppendCoords T will append the structure
at each step to UpdatedAtoms.dat in the format of a CONQUEST structure input.

For the SQNM, L-BFGS and conjugate gradients relaxations, the progress of the calculation can be monitored by
searching for the word GeomOpt; grepping will print the following:

$ grep GeomOpt Conquest_out
GeomOpt - Iter: 0 MaxF: 0.00329282 H: -0.14168571E+03 dH: 0.00000000
GeomOpt - Iter: 1 MaxF: 0.00331536 H: -0.14168995E+03 dH: 0.00424155
GeomOpt - Iter: 2 MaxF: 0.00350781 H: -0.14168997E+03 dH: 0.00001651
GeomOpt - Iter: 3 MaxF: 0.00504075 H: -0.14169161E+03 dH: 0.00164389
GeomOpt - Iter: 4 MaxF: 0.00725611 H: -0.14169172E+03 dH: 0.00010500
GeomOpt - Iter: 5 MaxF: 0.01134145 H: -0.14169329E+03 dH: 0.00157361
GeomOpt - Iter: 6 MaxF: 0.01417229 H: -0.14169385E+03 dH: 0.00056077
GeomOpt - Iter: 7 MaxF: 0.01434628 H: -0.14169575E+03 dH: 0.00190304
GeomOpt - Iter: 8 MaxF: 0.01711197 H: -0.14170001E+03 dH: 0.00425400
GeomOpt - Iter: 9 MaxF: 0.02040556 H: -0.14170382E+03 dH: 0.00381110
GeomOpt - Iter: 10 MaxF: 0.01095167 H: -0.14170752E+03 dH: 0.00370442

In this example, MaxF is the maximum single force component, H is the enthalpy and dH is the change in enthalpy.
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2.6.1 Ionic relaxation

To optimise the ionic positions with respect to the DFT total energy, the following flags are essential:

AtomMove.TypeOfRun sqnm
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T

The parameter AtomMove.TypeOfRun can take the values sqnm, lbfgs or cg for iterative optimisation. All three
algorithms are robust and relatively efficient in most instances; SQNM [SR1] is recommended in most cases, though if
the initial forces are large it may be worth performing quenched MD to reduce them (see below) before applying SQNM.
The parameter AtomMove.MaxForceTol specifies the force convergence criterion in Ha/bohr, i.e. the calculation will
terminate when the largest force component on any atom is below this value. The parameter AtomMove.ReuseDM
specifies that the density matrix (the K-matrix for diagonalisation or L-matrix for O(N) calculations) from the previous
step will be used as an initial guess for the SCF cycle after propagating the atoms; this should generally decrease the
number of SCF cycles per ionic step. When using CG, the line minimiser can be chosen: safe uses a robust though
sometimes slow line minimiser; backtrack uses a simple back-tracking line minimiser (starting with a step size of
1 and reducing if necessary to ensure the energy goes down); adapt uses an adaptive back-tracking line minimiser
(which increases the starting step size if the energy goes down on the first step). In many cases the back-tracking line
minimiser is more efficient, though the efficiency of the adaptive approach varies with problem.

If the self-consistency tolerance is too low, the optimisation may fail to converge with respect to the force tolerance;
this may necessitate a tighter minE.SCTolerance for diagonalisation (also possibly minE.LTolerance for O(N)
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calculations). A grid which is too coarse can also cause problems with structural relaxation to high tolerances.

For large initial forces or problematic cases where the relaxation algorithms fail to find a downhill search direction,
it may be worth trying quenched molecular dynamics, which propagates the equations of motion following a simple
NVE approach, but resets the velocities to zero when the dot product of force and velocity is zero.

AtomMove.TypeOfRun md
AtomMove.QuenchedMD T
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T

The FIRE algorithm [SR2] is a variant of quenched MD that has been shown to outperform conjugate gradients in some
circumstances.

AtomMove.TypeOfRun md
AtomMove.FIRE T
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T
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2.6.2 Simulation cell optimisation

The simulation cell can be optimised with respect to enthalpy with fixed fractional coordinates (AtomMove.
OptCellMethod 1) using the following input:

AtomMove.TypeOfRun cg
AtomMove.OptCell T
AtomMove.OptCellMethod 1
AtomMove.ReuseDM T
AtomMove.EnthalpyTolerance 1E-5
AtomMove.StressTolerance 0.1

Note that stress is in GPa and enthalpy is in Ha by default.
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2.6.3 Combined optimisation

For simple crystals, the fractional ionic coordinates vary trivially with changes in the simulation cell lengths; however
for more complicated systems such as molecular crystals and amorphous materials, it is necessary simultaneously relax
the ionic positions and simulation cell lengths (recalling that CONQUEST only allows orthorhombic unit cells). This
can be done by setting AtomMove.OptCellMethod 2 or AtomMove.OptCellMethod 3

AtomMove.TypeOfRun cg
AtomMove.OptCell T
AtomMove.OptCellMethod 2
AtomMove.ReuseDM T
AtomMove.MaxForceTol 5e-4
AtomMove.EnthalpyTolerance 1E-5
AtomMove.StressTolerance 0.1

Note that stress is in GPa and enthalpy is in Ha by default.
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The enthalpy will generally converge much more rapidly than the force and stress, and that it may be necessary to tighten
minE.SCTolerance (diagonalisation) or minE.LTolerance (order(N)) to reach the force and stress tolerance, if it is
even possible. For combined optimisation, we recommend using AtomMove.OptCellMethod 2, which uses a simple
but robust double-loop minimisation: a full ionic relaxation (using either cg or sqnm) followed by a full simulation
cell relaxation (using cg). While this may be less efficient than optimising all degrees of freedom simultaneously, it is
much more robust. It is also possible to optimise cell vectors and atomic positions simultaneously, using AtomMove.
OptCellMethod 3, but this should be monitored carefully, as it can be unstable.
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2.7 Molecular Dynamics

CONQUEST can perform molecular dynamics both when the density matrix is computed using diagonalisation and
O(N), the latter allowing dynamical simulations of (but not limited to) tens of thousands of atoms. The equations of
motion are integrated using the velocity Verlet method in the case of the microcanonical ensemble (NVE), and modi-
fications thereof for the canonical (NVT) and isobaric-isothermal (NPT) ensembles, the details of which can be found
in Molecular Dynamics: Theory. In addition to converging the parameters for the electronic structure calculations, the
following points must also be considered.
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2.7.1 Self-consistency tolerance and XL-BOMD

The convergence of the electronic structure is important in MD, as insufficient convergence can be responsible for
“drift” in the conserved quantity of the dynamics. Although the molecular dynamics integrators used in CONQUEST
are time reversible, the SCF procedure is not. Therefore tight convergence (minE.SCTolerance for diagonalisation,
minE.LTolerance for linear scaling) is necessary. In the case of diagonalisation, SCF tolerance of 1E-6 is typically
enough to negate the drift. However, extended-Lagrangian Born-Oppenheimer MD (XL-BOMD) [MD1], currently
only implemented for O(N), essentially makes the SCF component of the MD time-reversible by adding the electronic
degrees of freedom to the Lagrangian, relaxing the constraint on minE.LTolerance— although it is still somewhat
dependent on the ensemble. In the NVE and NVT ensembles, a L-tolerance of 1E-5 has been found to be sufficient
to give good energy conservations, decreasing to 1E-6 in the NPT ensemble. The following flags are required for
XL-BOMD:

DM.SolutionMethod ordern
AtomMove.ExtendedLagrangian T
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2.7.2 Restarting

Assuming the calculation ended gracefully, it can easily be restarted by setting,

AtomMove.RestartRun T

This will do several things: it will read the atomic coordinates from md.position and read the md.checkpoint file,
which contains the velocities and extended system (Nose-Hoover chain and cell) variables. Depending on the value
of DM.SolutionMethod, it will read the K-matrix files (diagon) or the L-matrix files (ordern), and if XL-BOMD
is being used, the X-matrix files. Finally, it will append new data to the md.stats and md.frames files, but it will
overwrite all other files, including Conquest_out. Note that this flag is equivalent to setting the following:

2.7. Molecular Dynamics 35



CONQUEST Documentation, Release 1.0.7-pre

General.LoadL T
SC.MakeInitialChargeFromK T
XL.LoadL T

In addition to the files mentioned above, CONQUEST will try to read the K-matrix from Kmatrix2.i00.*when using
diagonalisation or the L-matrix from Lmatrix2.i00.* when using O(N), and Xmatrix2.i0*.* if the extended-
Lagrangian formalism is used. Note that metadata for these files is stored in InfoGlobal.i00.dat which is also
required when restarting. If the calculation ended by hitting the walltime limit, the writing of these matrix files may
have been interrupted, rendering them unusable. In this case, the calculation can be restarted by setting the above
flags to F after setting AtomMove.RestartRun T. Setting the flag General.MaxTime to some number of seconds
less (say 30 minutes) than the calculation wall time limit will force the calculation to stop gracefully, preventing the
aforementioned situation.

Go to top.

2.7.3 Visualising the trajectory

Setting the flag AtomMove.WriteXSF T dumps the coordinates to the file trajectory.xsf every AtomMove.
OutputFreq steps. The .xsf file can be read using VMD. A small VMD script, view.vmd is included with the code,
and can be invoked using,

vmd -e view.vmd

assuming the vmd executable is in your path.

Go to top.

2.7.4 TDEP output

CONQUEST molecular dynamics data can be used to perform lattice dyanmical calculations using the Temperature
Dependent Effective Potential (TDEP) code. Setting the flag MD.TDEP T will make conquest dump configurations,
forces and metadata in a format readable by TDEP.

Go to top.

2.7.5 Non-Hamiltonian dynamics

Canonical (NVT) ensemble

The thermostat is set using the MD.Thermostat flag, and can take the values svr (stochastic velocity rescaling) and
nhc (Nose-Hoover chain). These thermostats generate the correct canonical ensemble phase space distribution, and
both give a conserved quantity that allows the quality of the dynamics to be monitored.

1. Stochastic velocity rescaling

AtomMove.IonTemperature 300.0
MD.Ensemble nvt
MD.Thermostat svr
MD.tauT 10

While the NHC uses chaotic sensitivity to initial conditions to achieve better ergodicity, the SVR thermostat [MD2]
uses a judiciously chosen stochastic force coupled to a weak scaling thermostat to correctly generate the canonical phase
space distribution. The MD.tauT parameter gives the coupling timescale; the velocity scaling factor is modified by a
factor ∆𝑡/𝜏 , so a larger 𝜏 results in a more slowly varying temperature. While some characterisation of the system is
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recommended, values of 𝜏 around 20–200fs are reasonable. To reproduce a simulation, the random number generator
seed can be set with the General.RNGSeed <integer> flag.

2. Nose-Hoover chain

AtomMove.IonTemperature 300.0
MD.Ensemble nvt
MD.Thermostat nhc
MD.nNHC 5
MD.nYoshida 5
MD.tauT 30

When thermostatting using a Nose-Hoover chain [MD3, MD4, MD5], it may be necessary to set a couple more flags.
MD.nNHC sets the number of thermostats in the chain (the default of 5 is generally sensible), and MD.nYoshida deter-
mines the order of Yoshida-Suzuki integration. This is essentially a higher level integration scheme that can improve
energy conservation in cases when rapid changes in the Nose-Hoover thermostat velocity is causing integration errors.
Note that MD.tauT means something different to the SVR case. A good guess is the time period of the highest
frequency motion of the system in fs; however, in the NVT ensemble, the energy conservation is not very sensitive to
this value. The NHC masses can also be set manually using the following block.

MD.CalculateXLMass F
MD.nNHC 5
%block MD.NHCmass
5 1 1 1 1

%endblock

Go to top.

Isobaric-Isothermal (NPT) ensemble

There is one implemented barostat at present, the extended system, Parrinello-Rahman [MD6]. At present the barostat
should be treated as a beta-version implementation, which will be fully characterised and made robust for the full
release of the code.

1. Parrinello-Rahman

AtomMove.IonTemperature 300.0
AtomMove.TargetPressure 10.0
MD.Ensemble npt
MD.Thermostat nhc
MD.Barostat pr
MD.nNHC 5
MD.nYoshida 5
MD.tauT 100
MD.tauP 200
MD.PDrag 10.0

The Parrinello-Rahman barostat generates the correct ensemble, but can be subject to low frequency “ringing” fluctua-
tions in the temperature and pressure that can destabilise the system or slow equilibration. Unlike in the NVT ensemble,
this combination of barostat and thermostat is very sensitive to the choice of both MD.tauT and MD.tauP; note that their
values are somewhat higher in this case, since integration errors in the NHC tend to be more severe due to coupling of
the cell and atomic motions. They are dependent on the system, so it is advised that you find a combination of these
parameters that gives the best energy conservation. The cell is thermostatted using a separate Nose-Hoover chain to
the atoms by default, but they can be controlled with the same chain by setting MD.CellNHC F. An ad hoc drag factor
specified by MD.PDrag reduces the thermostat and cell velocities at every timestep to damp out the ringing fluctuations.
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In this case, they are reduced by 10/200 ≃ 5%, which strictly speaking breaks the NPT dynamics, but not significantly,
and the stability is significantly improved.

Note that the NPT ensemble can also be generated correctly by thermostatting using the SVR thermostat, although the
meaning of the parameter MD.tauT is different in this case, as in NVT dynamics.

2.7.6 Postprocessing tools

Details of Python post-processing tools for CONQUEST can be found in Molecular dynamics analysis.

Go to top.
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2.8 Post-processing CONQUEST output

2.8.1 Introduction

The utility PostProcessCQ allows users to post-process the output of a CONQUEST calculation, to produce structure
files, densities of states, and charge density, band densities and STM images as CUBE files (which can be read by the
freely available VESTA code).

There are a number of different analyses which can be performed: coordinate conversion (to formats which can be
plotted); conversion of total charge density to CUBE file format; production of band-resolved (optionally k-point re-
solved) densities in CUBE file format; simple Tersoff-Hamann STM simulation; and calculation of densities of states,
including projected DOS. You should ensure that all the files produced during the CONQUEST run are available
for the post-processing (including eigenvalues.dat, chden.NNN, make_blk.dat or hilbert_make_blk.dat and
ProcessNNNNNNNWF.dat and ProcessSijNNNNNNNWF.dat as applicable) as well as the input files.

Note that the utility reads the Conquest_input file, taking some flags from the CONQUEST run that generated the
output, and some utility-specific flags that are detailed below.

Note also that projected DOS, band density and STM simulation are not at present compatible with multi-site support
functions (MSSF), though we hope to implement this soon.

Go to top.

2.8.2 Coordinate conversion

Set Process.Job coo to output a coordinate file for further processing or plotting. The utility will read the file
specified by Process.Coordinates (which defaults to the file specified by IO.Coordinates). The output format is
selected by specifying the Process.CoordFormat tag. The default output format is XYZ (which adds a .xyz suffix
to the file name) using xyz. The CASTEP .cell output format can also be selected using cell. We plan to expand
this conversion to other formats in the future.

Note that for a structural relaxation or molecular dynamics calculation, if you do not specify Process.Coordinates
then the IO.Coordinates file, which will be converted, will be the input structure, not the output structure. Parameters
that can be set are:

Process.Coordinates string (default: IO.Coordinates value)
Process.CoordFormat string (default: xyz; options: xyz, cell)

Go to top.
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2.8.3 Charge density

Setting Process.Job to cha, chg or den will convert the files chden.NNN which are written by CONQUEST
to a cube file. The processing will use the files chden.NNN, Conquest_input and hilbert_make_blk.dat or
raster_make_blk.dat. Parameters that can be set include:

Process.ChargeStub string (default: chden)

The ChargeStub simply defines the filename which will be read, and used for output.

Note that to output the chden.NNN files from CONQUEST, you must set the flag IO.DumpChargeDensity T in the
CONQUEST run.
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2.8.4 Band density

Setting Process.Job to ban produces band densities from wave function coefficients output by CONQUEST. The
CONQUEST run must have the following tags set:

IO.outputWF T

A set of bands whose coefficients are output are specified either with an energy range (the default is to produce all
bands):

IO.WFRangeRelative T/F
IO.min_wf_E real (Ha)
IO.max_wf_E real (Ha)

or with a list of bands:

IO.maxnoWF n

%block WaveFunctionsOut
n entries, each a band number
%endblock

The wavefunction range can be relative to the Fermi level (IO.WFRangeRelative T) otherwise it is absolute. Either of
these will produce a file containing all eigenvalues at all k-points (eigenvalues.dat) and a series of files containing
the wavefunction expansion coefficients for the selected bands (ProcessNNNNNNNWF.dat). These files are output
as binary (unformatted) by default (this can be changed by setting IO.MatrixFile.BinaryFormat F before the
CONQUEST run) and will be read using the same format (it is important to check this!).

From these wavefunction coefficient files, band densities can be produced in post-processing, using similar tags; either
a range:

Process.min_wf_E real (Ha)
Process.max_wf_E real (Ha)
Process.WFRangeRelative T/F

or an explicit list of bands:

Process.noWF n

%block WaveFunctionsProcess
(continues on next page)
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n entries, each a band number
%endblock

Note that the bands to be processed must be a subset of the bands output by CONQUEST. The bands can be output
summed over k-points, or at individual k-points, by setting Process.outputWF_by_kpoint to F or T respectively.

Go to top.

2.8.5 Tersoff-Hamann STM simulation

Setting Process.Job ter will use a very simple Tersoff-Hamann approach to STM simulation, summing over band
densities between the Fermi level and the bias voltage (this is often surprisingly accurate). The following parameters
can be set:

STM.BiasVoltage real (eV)
STM.FermiOffset real (eV)
Process.MinZ real (Bohr)
Process.MaxZ real (Bohr)
Process.RootFile string (default: STM)

The FermiOffset tag allows the user to shift the Fermi level (to simulate charging or an external field). The height
of the simulation cell in which the STM image is calculated is set by the MinZ and MaxZ tags, and the filename by the
RootFile tag.
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2.8.6 Density of states (DOS)

Setting Process.Job dos will produce a total density of states (DOS) for the system, using the eigenvalues output by
CONQUEST. The following parameters can be set:

Process.min_DOS_E real (Ha, default lowest eigenvalue)
Process.max_DOS_E real (Ha, default highest eigenvalue)
Process.sigma_DOS real (Ha, default 0.001)
Process.n_DOS integer (default 1001)

The limits for the DOS are set by the first two parameters (note that CONQUEST will output all eigenvalues, so the
limits on these are set by the eigenspectrum). The broadening applied to each state is set by sigma_DOS, while the
number of bins is set by n_DOS. The integrated DOS is also calculated; the user can choose whether this is the total
integrated DOS (i.e. from the lowest eigenvalue, regardless of the lower limit for DOS) or just the local integrated DOS
(i.e. over the interval specified for the DOS) by setting Process.TotalIntegratedDOS to T or F, respectively.

We recommend that, for accurate DOS, CONQUEST should be run non-self-consistently with a very high k-point
density, after reading in a well-converged input charge density: set minE.SelfConsistent F and General.
LoadRho T (which will require that the converged charge density is written out by CONQUEST by setting IO.
DumpChargeDensity T).

Go to top.
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2.8.7 Atom-projected DOS

Setting Process.Job pdos will produce a total density of states as above, as well as the density of states projected
onto the individual atoms. Given support functions 𝜑𝑖𝛼(r) which are the basis functions of the Kohn-Sham eigenstates
𝜓𝑛(r) =

∑︀
𝑖𝛼 𝑐

𝑛
𝑖𝛼𝜑𝑖𝛼(r), then the projection of a given state, 𝑛, onto an atom 𝑖 can be written as

∑︀
𝛼𝑗𝛽 𝑐

𝑛
𝑖𝛼𝑆𝑖𝛼,𝑗𝛽𝑐

𝑛k
𝑗𝛽 .

The projected DOS is constructed using these projections.

If using pseudo-atomic orbitals (PAOs) as the basis set, then the atom-projected DOS can be further resolved by angular
momentum (either just 𝑙 or both 𝑙 and 𝑚). If using pseudo-atomic orbitals (PAOs) with multi-site support functions or
blip functions then it is not possible to decompose the DOS any further (in future, it may be possible to resolve the MSSF
coefficients into the individual PAOs, and hence decompose pDOS by angular momentum). To output the necessary
coefficients to produce atom-projected DOS, a CONQUEST run must be performed with the following parameters set:

IO.writeDOS T
IO.write_proj_DOS T

As for the DOS, very high Brillouin zone sampling is required for accurate projected DOS, which is most efficiently
generated using a converged charge density and a non-self-consistent calculation with much higher k-point density.
CONQUEST will produce the wavefunction files (ProcessNNNNNNNWF.dat and ProcessSijNNNNNNNWF.dat) as
binary (unformatted) by default (change using the flag IO.MatrixFile.BinaryFormat F).

Once the files have been generated by CONQUEST, the output can be processed by setting the output tag:

Process.Job pdos

This is all that is needed for the simplest output. The number of bins and smearing of the peaks can be set using:

Process.sigma_DOS 0.002
Process.n_DOS 10001

To resolve the DOS by angular momentum as well as by atom, then the following flags can be set:

Process.pDOS_l_resolved T
Process.pDOS_lm_resolved T

Note that only one of these is needed, depending on what level of resolution is required. At present, angular momentum
resolution is only available for the PAO basis set (not MSSF or blips) though it is under development for the MSSF
basis (by projection onto the underlying PAO basis).

The energy range for the projected DOS can also be specified:

Process.min_DOS_E -0.35
Process.max_DOS_E 0.35
Process.WFRangeRelative T

where the final tag sets the minimum and maximum values relative to the Fermi level.

If you only want to produce pDOS for a few atoms, then you can set the variable Process.n_atoms_pDOS and list the
atoms you want in the block pDOS_atoms:

Process.n_atoms_pDOS 2
%block pDOS_atoms
1
12
%endblock

Go to top.
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2.8.8 Band structure

The band structure of a material can be generated by CONQUEST by performing a non-self-consistent calculation, after
reading a well-converged charge density: set minE.SelfConsistent F and General.LoadRho T (remember that to
write a converged charge density from CONQUEST you set IO.DumpChargeDensity T). The k-points required can
be specified as lines of points in k-space; setting Diag.KspaceLines T enables this (replacing the usual MP mesh),
while the number of lines (e.g. Gamma to L; L to X; would be two lines) is set with Diag.NumKptLines and the
number of points along a line with Diag.NumKpts. The k-point lines themselves are set with a block labelled Diag.
KpointLineswhich should have two entries (starting and finishing k-points) for each k-point line. (In constructing the
k-point list, CONQUEST will automatically remove any duplicate points, so that the output can be plotted smoothly.)
So to create a bandstructure from X-Γ-L-X (3 lines: X-Γ; Γ-L; L-X) with 11 points in each line, you would use the
following input:

Diag.KspaceLines T
Diag.NumKptLines 3
Diag.NumKpts 11
%block Diag.KpointLines
0.5 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.0 0.0
%endblock

After running CONQUEST, setting Process.Job bst and running the post-processing will read the resulting
eigenvalues.dat file, and produce a file BandStructure.dat. The x-axis will be the k-point index by default,
but specifying Process.BandStrucAxis (taking value n for index, x, y or z for a single direction in k-space, or a to
give all k-point coordinates) will allow you to control this. Limits on the energies to select the bands produced can be
set with Process.min_DOS_E and Process.max_DOS_E.
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2.9 Managing Conquest with ASE

Below we give an introduction how to setup the ASE environment with respect to CONQUEST repository along with
a few examples of ASE/Conquest capabilities. We assume that a python script or jupyter-notebook is used.

2.9.1 Setup

Environment variables

The script will need to set environmental variables specifying the locations of the CONQUEST executable Conquest,
and if required, the basis set generation executable MakeIonFiles and pseudopotential database. These variables are:

• ASE_CONQUEST_COMMAND: the Conquest executable command including MPI/openMPI prefix.

• CQ_PP_PATH: the PAO path directory to where are located the the .ion files.

• (optional) CQ_GEN_BASIS_CMD : the PAO generation executable MakeIonFiles.

Given the Conquest root directory CQ_ROOT, initialisation might look to something like
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import os

CQ_ROOT = 'PATH_TO_CONQUEST_DIRECTORY'

os.environ['ASE_CONQUEST_COMMAND'] = 'mpirun -np 4 '+CQ_ROOT+'/bin/Conquest'
os.environ["CQ_GEN_BASIS_CMD"] = CQ_ROOT+'/bin/MakeIonFiles"
os.environ['CQ_PP_PATH'] = CQ_ROOT+'/pseudo-and-pao/'

Go to top.

Pseudopotential/PAO files

Conquest atomic pseudotential and basis functions are store in the .ion files which will ne referred as to PAO files.
Provided the pseudopotential files .pot available in CQ_PP_PATH, automatic generation of numerical PAOs is possible
using the program MakeIonFiles available from the Conquest package.

Provided the PAO files, the basis set is specified through a python dictionary, for example:

basis = {'O' : {'file': 'O_SZP.ion'},
'H' : {'file': 'H_SZP.ion'},
'C' : {'file': 'C_SZP.ion'}}

In this case they are all assumed to be obtained from Hamann pseudopotentials, which are the default. Knowing the
the exchange and correlation functional <XC> from the Conquest input (vide infra) and the chemical symbol <X>, the
Calculator will search the .ion file in different places:

CQ_PP_PATH
CQ_PP_PATH/lib/
CQ_PP_PATH/<XC>/<X>/

including the current directory and the ASE working directory (vide infra). If your PAO file is located in a different
place you can include the path in the basis dictionary:

basis = {'O' : {'file': 'O_SZP.ion',
'directory': '<PATH_TO_FILE>'},

'H' : {'file' : 'H_SZP.ion'},
'C' : {'file' : 'C_SZP.ion'}}

For generating the PAO files, the keyword gen_basis should be set to True (default is False) and the size be provided
(default is medium). For instance:

basis = {'O' : {'gen_basis' : True,
'basis_size': 'small'},

'C' : {'gen_basis' : True,
'basis_size': 'medium'},

'H' : {'gen_basis' : True,
'basis_size': 'large'}}

will create the O.ion, C.ion and H.ion files where small, medium and large are default size basis set. You are
allowed to choose the functional and to add options for basis set generation:

basis = {'H' : {'gen_basis' : True,
'basis_size': 'small',

(continues on next page)
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'xc' : 'LDA',
'Atom.Perturbative_Polarised': False}}

Note: Only Hamann pseudopotentials for LDA, PBE and PBEsol are available within the CONQUEST distribution.
For using other functionals see Generating new pseudopotentials.

Warning: Generating polarised PAOs for some atoms can be problematic (mainly group I and II). Please review
carefuly the MakeIonFiles input files named Conquest_ion_input which are collected in CQ_PP_PATH/<XC>/
<X>/ if you are not sure about what you are doing, and check your PAOs.
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2.9.2 CONQUEST Calculator

The CONQUEST Calculator class can be invoked from the ase Calculator set as described in the example below:

from ase.calculators.conquest import Conquest

A minimal example is given below for setting the CONQUEST Calculator (named calc) of the ASE Atoms object
named struct:

from ase.calculators.conquest import Conquest
from ase.build import bulk

struct = bulk('NaCl', crystalstructure='rocksalt', a=5.71, cubic=True)
basis = {'Cl' : {'file' : 'Cl.ion'}, 'Na' : {'file' : 'Na.ion'}}

calc = Conquest(basis=basis,atoms=struct)

or, equivalently,

from ase.calculators.conquest import Conquest
from ase.build import bulk

struct = bulk('NaCl', crystalstructure='rocksalt', a=5.71, cubic=True)
basis = {'Cl' : {'file' : 'Cl.ion'}, 'Na' : {'file' : 'Na.ion'}}

struct.calc = Conquest(basis=basis)

In basic calculate mode (compute energy), the Calculator comes with 3 methods:

• write_input():
this function will setup the input files. For CONQUEST, the PAO basis will be generated/copied with
respect to the dictionary key/value pairs, and Conquest_input file including the calculation parameters
will be written, a long with the coordinate file, containing the lattice vectors (in Bohr Unit) and atomic
positions (in fractional coordinates).

• execute():
this function execute the calculation. For CONQUEST, it will launch the ASE_CONQUEST_COMMAND setup
in the environment varaibles.
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• read_results():
this function post-process the the output file. For CONQUEST, the energy, forces, stress and
eigenvalues will be extracted from the Conquest_out_ase output file.

Note: The funtion read_results() operate on the Conquest_out_ase file. This output file is not created by
default by CONQUEST. If you want to post-process a calculation with an input generated by hand you must add IO.
WriteOutToASEFile True in conquest_input.

The indirect way for managing CONQUEST calculation with ASE is:

struct.calc = Conquest(basis=basis)

struct.calc.write_input(struct)
struct.calc.execute()
struct.calc.read_results(struct)

where struct.calc.execute() can be ignored when, for instance, the calculation is performed on a supercomputer
and the output file is then copied back to the current directory for post-processing.

The direct way is simply:

struct.calc = Conquest(basis=basis)

struct.calc.calculate(struct)

or, equivalently,

struct.calc = Conquest(basis=basis)

struct.get_potential_energy()

Go to top.

2.9.3 Keywords for generating the Conquest_input file

In principle all the Conquest input parameters can be added to Conquest_out_ase using key/value pairs in a dictionary.
There are 3 class of parameters:

• mandatory : they are parsed to the Calculator and have no defaults ; there are mandatory.

• important : they are parsed to the Calculator they can be freely modified. Some of them are pure ASE keywords.

• defaults : they are set as defaults ; some of them must not be modified. They are read by the Calculator through
a dictionay conquest_flags.
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Mandatory keywords

keyword type default value description
atoms atoms None an atoms object constructed either via ASE or read from an input
basis dict None a dictionary specifying the pseudopotential/basis files

Important keywords

keyword CONQUEST
equivalence

type default
value

description

directory None str None directory used for storing input/output and cal-
culation files

label None str None basename for working files (only used by ASE,
eg. NEB)

kpts None list or
tuple

None k-points grid ; converted to CONQUEST
Monkhorst-Pack grid

grid_cutoff Grid.GridCutoff float 100 integration grid in Ha
xc General.

FunctionalType
str ‘PBE’ exchange and correlation functional

self_consistentminE.
SelfConsistent

bool True choose either SCF or non-SCF

scf_toleranceminE.SCTolerance float 1e-6 Self-consistent-field convergence tolerance in
Ha

nspin Spin.
SpinPolarised

int 1 spin polarisation: 1 for unpolarized or 2 for
polarised

conquest_flagsNone dict None other CONQUET keyword arguments

Defaults keywords

keyword type default
value

description

IO.WriteOutToASEFile bool True write ASE output file ; must always be True when using ASE
for post-processing

IO.Iprint int 1 verbose for the output ; must always be 1 when using ASE for
post-processing

DM.SolutionMethod str ‘diagon’ ‘diagon’ stands for diagonalisation other is ‘ordern’ (base on
density matrix)

General.
PseudopotentialType

str ‘Hamann’ kind of pseudopotential other type are ‘siesta’ and ‘abinit’

SC.MaxIters int 50 maximum number SCF cycles
AtomMove.TypeOfRun str ‘static’ ‘static’ stands for single (non)SCF other are ‘md’ or optimisation

algorithms.
Diag.SmearingType int 1 1 for Methfessel-Paxton ; 0 for Fermi-Dirac
Diag.kT float 0.001 smearing temperature in Ha
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2.9.4 Some examples

An example of more advanced Calculator setup is given below for a SCF calculation on BCC-Na where for a PBE
calculation using a k-point grid of 6× 6× 6 using the Fermi-Dirac distribution for the occupation with a smearing of
0.005 Ha:

struct = bulk('Na', crystalstructure='bcc', a=4.17, cubic=True)
basis = {'Na' : {'file' : 'NaCQ.ion'}}

conquest_flags = {'Diag.SmearingType': 0,
'Diag.kT' : 0.005}

struct.calc = Conquest(directory = 'Na_bcc_example',
grid_cutoff = 90.0,
self_consistent= True,
xc = 'PBE',
basis = basis,
kpts = [6,6,6],
nspin = 1,
**conquest_flags)

struct.get_potential_energy()

Finally, defaults and other input flags can be defined in a new dictionary, and passed as an expanded set of keyword
arguments.

conquest_flags = {'DM.SolutionMethod' : 'ordern',
'DM.L_range' : 12.0,
'minE.LTolerance' : 1.0e-6}

Here is an example, combining the above. We set up a cubic diamond cell containing 8 atoms, and perform a single point
energy calculation using the order(N) method (the default is diagonalisation, so we must specify all of the order(N)
flags). We don’t define a basis set, instead providing keywords that specify that a minimal basis set should be constructed
using the MakeIonFiles basis generation tool.

import os
from ase.build import bulk
from ase.calculators.conquest import Conquest

CQ_ROOT = 'PATH_TO_CONQUEST_DIRECTORY'

os.environ['ASE_CONQUEST_COMMAND'] = 'mpirun -np 4 '+CQ_ROOT+'/bin/Conquest'
os.environ["CQ_GEN_BASIS_CMD"] = CQ_ROOT+'/bin/MakeIonFiles"
os.environ['CQ_PP_PATH'] = CQ_ROOT+'/pseudo-and-pao/'

diamond = bulk('C', 'diamond', a=3.6, cubic=True) # The atoms object
conquest_flags = {'DM.SolutionMethod' : 'ordern', # Conquest keywords

'DM.L_range' : 12.0,
'minE.LTolerance' : 1.0e-6}

basis = {'C': {'basis_size' : 'minimal', # Generate a minimal basis
'gen_basis' : True}

calc = Conquest(grid_cutoff = 80, # Set the calculator keywords
(continues on next page)
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xc = 'PBE',
self_consistent=True,
basis = basis,
nspin = 1,
**conquest_flags)

diamond.set_calculator(calc) # attach the calculator to the atoms object
energy = diamond.get_potential_energy() # calculate the potential energy

Go to top.

Multisite support functions

Multisite support functions require a few additional keywords in the atomic species block, which can be specified as
follows:

basis = {'C': {"basis_size": 'medium',
"gen_basis": True,
"pseudopotential_type": "hamann",
"Atom.NumberofSupports": 4,
"Atom.MultisiteRange": 7.0,
"Atom.LFDRange": 7.0}}

Note that we are constructing a DZP basis set (size medium) with 13 primitive support functions using MakeIonFiles,
and contracting it to multisite basis of 4 support functions. The calculation requires a few more input flags, which are
specified in the other_keywords dictionary:

other_keywords = {"Basis.MultisiteSF": True,
"Multisite.LFD": True,
"Multisite.LFD.Min.ThreshE": 1.0e-7,
"Multisite.LFD.Min.ThreshD": 1.0e-7,
"Multisite.LFD.Min.MaxIteration": 150,
}

Go to top.

Loading the K/L matrix

Most calculation that involve incrementally moving atoms (molecular dynamics, geometry optimisation, equations of
state, nudged elastic band etc.) can be made faster by using the K or L matrix from a previous calculation as the
initial guess for a subsequent calculation in which that atoms have been moved slightly. This can be achieved by
first performing a single point calculation to generate the first K/L matrix, then adding the following keywords to the
calculator:

other_keywords = {"General.LoadL": True,
"SC.MakeInitialChargeFromK": True}

These keywords respectively cause the K or L matrix to be loaded from file(s) Kmatrix.i**.p*****, and the initial
charge density to be constructed from this matrix. In all subsequent calculations, the K or L matrix will be written at
the end of the calculation and used as the initial guess for the subsequent ionic step.

Go to top.
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Equation of state

The following code computes the equation of state of diamond by doing single point calculations on a uniform grid of
the a lattice parameter. It then interpolates the equation of state and uses matplotlib to generate a plot.

import scipy as sp
from ase.build import bulk
from ase.io.trajectory import Trajectory
from ase.calculators.conquest import Conquest

# Construct a unit cell
diamond = bulk('C', 'diamond', a=3.6, cubic=True)

basis = {'C': {"basis_size": 'minimal',
"gen_basis": True}}

calc = Conquest(grid_cutoff = 50,
xc = "PBE",
basis = basis,
kpts = [4,4,4])

diamond.set_calculator(calc)

cell = diamond.get_cell()
traj = Trajectory('diamond.traj', 'w') # save all results to trajectory

for x in sp.linspace(0.95, 1.05, 5): # grid for equation of state
diamond.set_cell(cell*x, scale_atoms=True)
diamond.get_potential_energy()
traj.write(diamond)

from ase.io import read
from ase.eos import EquationOfState

configs = read('diamond.traj@0:5')
volumes = [diamond.get_volume() for diamond in configs]
energies = [diamond.get_potential_energy() for diamond in configs]
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()

import matplotlib
eos.plot('diamond-eos.pdf') # Plot the equation of state

Go to top.
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2.10 External tools

2.10.1 Post-processing for charge density, band density, DOS, STM

The utility PostProcessCQ allows users to post-process the output of a CONQUEST calculation, to produce the charge
density, band densities, DOS and STM images in useful forms. It is described fully here.

2.10.2 Molecular dynamics analysis

Several scripts that may be helpful with postprocessing molecular dynamics are included with CONQUEST. The can
be found in the tools directory, and the executables are plot_stats.py, md_analysis.py and heat_flux.py.
They have the following dependencies:

• Python 3

• Scipy/Numpy

• Matplotlib

If Python 3 is installed the modules can be added easily using pip3 install scipy etc.

These scripts should be run in the calculation directory, and will automatically parse the necessary files, namely
Conquest_input, input.log, md.stats and md.frames assuming they have the default names. They will also
read the CONQUEST input flags to determine, for example, what ensemble is used, and process the results accord-
ingly.

Go to top.

Plotting statistics

usage: plot_stats.py [-h] [-c] [-d DIRS [DIRS ...]]
[--description DESC [DESC ...]] [--skip NSKIP]
[--stop NSTOP] [--equil NEQUIL] [--landscape]
[--mser MSER_VAR]

Plot statistics for a CONQUEST MD trajectory

optional arguments:
-h, --help show this help message and exit
-c, --compare Compare statistics of trajectories in directories

specified by -d (default: False)
-d DIRS [DIRS ...], --dirs DIRS [DIRS ...]

Directories to compare (default: .)
--description DESC [DESC ...]

Description of graph for legend (only if using
--compare) (default: )

--skip NSKIP Number of equilibration steps to skip (default: 0)
--stop NSTOP Number of last frame in analysis (default: -1)
--equil NEQUIL Number of equilibration steps (default: 0)
--landscape Generate plot with landscape orientation (default:

False)
--mser MSER_VAR Compute MSER for the given property (default: None)
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Running plot_stats.py --skip 200 in your calculation will generate a plot which should resemble the example
below, skipping the first 200 steps. This example is a molecular dynamics simulation of 1000 atoms of bulk silicon in
the NPT ensemble, at 300 K and 0.1 GPa.

The four plots are respectively the breakdown of energy contributions, the conserved quantity, the temperature and the
pressure, the last of which is only included for NPT molecular dynamics. Several calculations in different directories can
be compared using plot_stats.py --compare -d dir1 dir2 --description "dir1 description" "dir2
description". The following example compares the effect of changing the L tolerance in the above simulation. Note
that the contents of the description field will be in the legend of the plot.
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MD analysis

usage: md_analysis.py [-h] [-d DIRS [DIRS ...]] [--skip NSKIP]
[--stride STRIDE] [--snap SNAP] [--stop NSTOP]
[--equil NEQUIL] [--vacf] [--msd] [--rdf] [--stress]
[--nbins NBINS] [--rdfwidth RDFWIDTH] [--rdfcut RDFCUT]
[--window WINDOW] [--fitstart FITSTART] [--dump]

Analyse a CONQUEST MD trajectory

optional arguments:
-h, --help show this help message and exit
-d DIRS [DIRS ...], --dirs DIRS [DIRS ...]

Directories to compare (default: .)
--skip NSKIP Number of equilibration steps to skip (default: 0)
--stride STRIDE Only analyse every nth step of frames file (default:

1)
--snap SNAP Analyse Frame of a single snapshot (default: -1)
--stop NSTOP Number of last frame in analysis (default: -1)
--equil NEQUIL Number of equilibration steps (default: 0)
--vacf Plot velocity autocorrelation function (default:

False)
(continues on next page)
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--msd Plot mean squared deviation (default: False)
--rdf Plot radial distribution function (default: False)
--stress Plot stress (default: False)
--nbins NBINS Number of histogram bins (default: 100)
--rdfwidth RDFWIDTH RDF histogram bin width (A) (default: 0.05)
--rdfcut RDFCUT Distance cutoff for RDF in Angstrom (default: 8.0)
--window WINDOW Window for autocorrelation functions in fs (default:

1000.0)
--fitstart FITSTART Start time for curve fit (default: -1.0)
--dump Dump secondary data used to generate plots (default:

False)

The script md_analysis.py script performs various analyses of the trajectory by parsing the md.frames` file. So far,
these include the radial distribution function, the velocity autocorrelation function, the mean squared deviation, and
plotting the stress. For example, the command,

md_analysis.py --rdf --stride 20 --rdfcut 8.0 --nbins 100 --dump --skip 200 --stop 400

computes the radial distribution function of the simulation in the first example from every 20th time step (every 10 fs
in this case), stopping after 400 steps, with a cutoff of 8.0 A, and the histogram is divided into 100 bins.

Go to top.

CONQUEST structure file analysis

usage: structure.py [-h] [-i INFILE] [--bonds] [--density] [--nbins NBINS]
[-c CUTOFF [CUTOFF ...]] [--printall]

Analyse a CONQUEST-formatted structure

optional arguments:
-h, --help show this help message and exit

(continues on next page)
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-i INFILE, --infile INFILE
CONQUEST format structure file (default:
coord_next.dat)

--bonds Compute average and minimum bond lengths (default:
False)

--density Compute density (default: False)
--nbins NBINS Number of histogram bins (default: 100)
-c CUTOFF [CUTOFF ...], --cutoff CUTOFF [CUTOFF ...]

Bond length cutoff matrix (upper triangular part, in
rows (default: None)

--printall Print all bond lengths (default: False)

The script structure.py can be used to analyse a CONQUEST-formatted structure file. This is useful to sanity-check
the bond lengths or density, since an unphysical structure is so often the cause of a crash. For example, the bond lengths
can be computed with

structure.py --bonds -c 2.0 3.0 3.0

where the -c flag specifies the bond cutoffs for the bonds 1-1, 1-2 and 2-2, where 1 is species 1 as specified in
Conquest_input and 2 is species 2. The output will look something like this:

Mean bond lengths:
O-Si: 1.6535 +/- 0.0041 (24 bonds)
Minimum bond lengths:
O-Si: 1.6493

Go to top.

2.10.3 Atomic Simulation Environment (ASE)

ASE is a set of Python tools for setting up, manipulating, running, visualizing and analyzing atomistic simulations.
ASE contains a CONQUEST interface, also called Calculator so that it can be used to calculate energies, forces
and stresses as inputs to other calculations such as Phonon or NEB that are not implemented in CONQUEST. ASE
is a versatil tool to manage CONQUEST calculations without pain either:

• in a direct way where pre-processing, calculation and post-processing are managed on-the-fly by ASE,

• or in an indirect way where the calculation step is performed outside the workflow, ie. on a supercomputer.

The ASE repository containing the Conquest calculator can be found here. Detailed documentation on how to manage
Conquest calculations with ASE is available here.

Go to top.

2.11 Error codes

Error codes generated by different CONQUEST routines will be collated here, along with explanations of the root cause
and suggested fixes. This will form part of the full release, but is not implemented in the pre-release.
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2.12 Input tags

We have broken down the input tags based on the areas of the code where they apply. For each tag, a default is given.
Types of value are specified as: integer; real; boolean; or string (optA/optB are given for string options).

Areas

• General

• Atomic Specification

• Input-Output General Tags

• Atomic Coordinates

• Levels of Output

• Integration Grid

• Minimising Energy

• Charge Self-Consistency

• Density Matrix

• Diagonalisation

• Moving Atoms

• Molecular Dynamics

• Spin Polarisation

• DeltaSCF

• Constrained DFT (cDFT)

• vdW-DF

• DFT-D2

• XL-BOMD

• Advanced and obscure tags

2.12.1 General

General.NumberOfSpecies (integer)
Number of species in cell

default: none

General.PseudopotentialType (string) siesta/hamann
Type of pseudopotential (in practice, this defines how the local part of the pseudopotential is handled)

default: hamann (read from ion file)

General.NeutralAtom (boolean)
Use neutral atom potential or not (removes need for Ewald sum)

default: T

2.12. Input tags 55



CONQUEST Documentation, Release 1.0.7-pre

General.FunctionalType (integer)
Selects the exchange-correlation functional. If the native CONQUEST XC implementation is used, there are three
parameterisations of the LDA available, as well as three variants of the PBE GGA functional, with numbers given
below.

default: read from ion file (same as pseudopotentials)

Functional Keyword Ref
LDA Perdew-Zunger, no SIC 1 [E1]
LDA Goedecker-Teter-Hutter 96 2 [E2]
LSDA Perdew-Wang 92 (default) 3 [E3]
GGA Perdew-Burke-Ernzerhof 96 (PBE) 101 [E4]
GGA PBE + Zhang-Yang 98 (revPBE) 102 [E5]
GGA PBE + Hammer-Hansen-Norskov 99 (RPBE) 103 [E6]
GGA WC 104 [E7]

At the moment, only LSDA Perdew-Wang 92 and the three GGA Perdew-Burke-Ernzerhof functional variants
can be used in spin polarised calculations.

Note that, if the code is compiled with LibXC, the full LibXC set of functionals is available, selected with a
negative six digit number (-XXXCCC or -CCCXXX).

General.EnergyUnits (string) Ha/Ry/eV
Output only Chooses units for energy

default: Ha

General.DistanceUnits (string) a0/bohr/A
Output only Chooses units for distance (Bohr: a0/bohr or Ångströms: A

default: a0

General.MemoryUnits (string) kB/MB/GB
Output only Chooses units for memory use

default: MB

General.PartitionMethod (string) File/Hilbert
Chooses method for partitioning (read from file or use dynamic partitioner based on Hilbert curve)

default: Hilbert

Options:

• Hilbert (default) — Automatic partitioning using Hilbert curves; safe for initial use though optimum load
balancing not guaranteed

• File — Reads a file (NOT recommended)

General.LoadBalance (string) partitions/atoms
Applies to Hilbert above; chooses whether to distribute atoms or partitions evenly between processors (you are
strongly recommended to use atoms)

default: atoms

General.ManyProcessors (boolean)
Applies to Hilbert above; chooses method for parallelising Hilbert curve work; “many” processors here probably
means more than two

default: T
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General.MaxAtomsPartition (integer)
Applies to Hilbert above; specifies maximum number of atoms allowed in a partition; triggers extra level of
recursion in partitioner

default: 34

General.NPartitions[X/Y/Z] (integer)
Allows the user to specify the number of partitions in x, y and z directions

default: 0 (i.e. use Hilbert partitioning, above)

General.NewRun (boolean)
Switches between new run and restart (N.B. restart has not been implemented yet)

default: T

General.LoadDM (boolean)
Specifies whether to load a previous density matrix (K or L depending on whether diagonalisation or linear
scaling are selected) from files

default: F

General.LoadRho (boolean)
Specifies whether to load a previous charge density from files

default: F

General.NetCharge (real)
Specifies net charge on unit cell; implemented rather crudely with a neutralising background charge assumed.
Note that a positive value indicates excess electrons

default: 0.0

General.EwaldAccuracy (real)
Accuracy for ewald sum (in Ha/atom)

default: 10−10

General.TimeThreshold (real)
Minimum time for a timer to be printed (in seconds)

default: 0.001

General.vdWDFT (boolean)
Selects vdW DF

default: F

General.DFT_D2 (boolean)
Selects DFT-D2

default: F

General.MaxTime (real)
Maximum wall time for calculation in seconds. Conquest will exit gracefully on completion of an ionic relax-
ation/MD step

default: 0.0

General.RNGSeed (integer)
Seed for the random number generator. If less than 0, a random seed will be generated, otherwise the specified
seed is used, and the same sequence of random numbers will be generated every time. Useful for reproducing
MD runs.

default: -1
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2.12.2 Atomic Specification

ChemicalSpeciesLabel (block)
Lists all atomic species used in the calculation. Format:

1 atomic_mass1 element_label_1

2 atomic_mass2 element_label_2

...

n atomic_mass_n_ element_label_n

(Note that the block must end with %endblock ChemicalSpeciesLabel.) 1-–n are integer numbers used in the
coordinate file to identify atomic species, as discussed in the Coordinates section. The atomic masses are only
used for dynamics. The element labels should have a corresponding ion file element_label_x.ion and may
have an accompanying atom specification block.

There can then be up to n atom specification blocks whose names should be element_label_x. When using
primitive PAOs for support functions many of these are read from the ion file.

Atom.MultisiteRange (real)
Range for multi-site support functions (the PAOs on all atoms within this range will be included in the support
function)

default: 0.0

Atom.LFDRange (real)
Range for local filter diagonalisation (the Hamiltonian and overlap matrix elements from all atoms within this
range will be included in the cluster diagonalisation)

default: 0.0

Go to top.

2.12.3 Input-Output General Tags

IO.Title (string)
Title for calculation

default: none

IO.Partitions (string)
Name for file containing distribution of partitions over processors (generated by accompanying utilities)

default: make_prt.dat

IO.WriteOutToFile (boolean)
Specifies whether the main output information is written to standard output or to a file

default: T

IO.OutputFile (string)
Name for the main output file

default: Conquest_out
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IO.DumpL (boolean)
Whether to write the auxiliary matrices L to file at each self-consistent steps

default: T

IO.DumpChargeDensity (boolean)
Whether to write out the charge density. If T, then the charge density will be written out at self-consistency;
additionally, if IO.Iprint_SC is larger than 2, the charge density will be written out at every step of the SCF
cycle. The resulting chden.nnn files can be converted to cube format files using the post-processing utility.

default: F

IO.Dump[Har|XC|PS|ES|Tot]Pot (boolean)
Flags to allow dumping of different local potentials (Hartree, XC, pseudopotential, electrostatic, total). Only
active when a static self-consistent run is chosen. (NB each flag must be set to true for output, such as
IO.DumpHarPot T etc.) Files can be converted to cube format as for charge density by setting Process.
ChargeStub appropriately (e.g. locpsHar with other files replacing Har with XC, PS, ES and Tot)

default: F

IO.TimingOn (boolean)
Whether time information will be measured and written to output

default: F

IO.TimeAllProcessors (boolean)
Specifies whether time information will be written for all processors or just for the input/output process (the
default)

default: F

IO.WriteTimeFile (boolean)
Whether time files are written or not. This flag will be ignored if IO.TimeAllProcessors is true, in which
case time files are always written.

default: T

IO.TimeFileRoot (string)
Root to be used in the time files, with an extension indicating the processor number, e.g. .001

default: time

Go to top.

2.12.4 Atomic Coordinates

IO.Coordinates (string)
Specifies the file with atomic coordinates. See Coordinates for details on the file format

default: none

IO.FractionalAtomicCoords (boolean)
Specifies whether fractional or absolute (Cartesian) coordinates are used in the coordinate file

default: T

IO.PdbIn (boolean)
Switches between the coordinate file format (F) and PDB format (T)

default: F

Go to top.
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2.12.5 Levels of Output

The overall level of output is controlled by IO.Iprint and can be fine-tuned with the other IO.Iprint keywords. These are
by default set to the value of IO.Iprint, but that will be over-ridden if setting them explicitly. For instance, IO.Iprint
could be set to 0, but IO.Iprint_MD could be set to 2 giving more extensive information about atomic movements but
little other information.

IO.Iprint (integer)
The amount of information printed out to the output file The larger the value the more detailed the output is.

0 Basic information about the system and the run
1 Overview of the SCF cycle and atom movement
2 More detail on SCF cycle, atom movement
3 Extensive detail on SCF cycle, atom movement
4 Details of energy breakdown
5 Excessive output, only for developers debugging

default: 0

IO.Iprint_init (integer)
The initialisation process

IO.Iprint_mat (integer)
Matrix operations

IO.Iprint_ops (integer)
Creation of operators H and S

IO.Iprint_DM (integer)
Density matrix

IO.Iprint_SC (integer)
Self-consistency

IO.Iprint_minE (integer)
Energy minimisation

IO.Iprint_MD (integer)
Molecular dynamics

IO.Iprint_index (integer)
Indexing routines

IO.Iprint_gen (integer)
General (not covered by other areas)

IO.Iprint_pseudo (integer)
Pseudopotentials

IO.Iprint_basis (integer)
Basis set

IO.Iprint_intgn (integer)
Integration on the grid (not used at present)

IO.Iprint_time (integer)
Timing information

Go to top.
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2.12.6 Integration Grid

Grid.GridCutoff (real)
An energy that defines the spacing of the integration grid (though for a blip calculation must be at least twice as
fine as blip grid, and will be adjusted). Note that the value chosen will automatically be forced to be a factor of
3, 4 and 5 only (to fit with default FFT routines)

Default: 50 Ha.

Go to top.

2.12.7 Minimising Energy

minE.VaryBasis (boolean)
Chooses whether or not basis coefficients should be varied to minimise the total energy

default: F

minE.SelfConsistent (boolean)
Determines whether or not self-consistency cycles are imposed between charge density and potential

default: T

minE.MixedLSelfConsistent (boolean)
Determines whether or not to perform self-consistent cycle at the same time as energy minimisation with respect
to L

default: F

minE.EnergyTolerance (real)
Fractional tolerance for energy on minimisation of support function coefficients

default: 1×10−5

minE.LTolerance (real)
Tolerance on residual in O(N) minimisation

default: 1×10−7

minE.SCTolerance (real)
Tolerance on residual in self-consistency

default: 1×10−6

minE.SupportVariations (integer)
Maximum number of support-function iterations

default: 20

minE.PreconditionBlips(boolean)
Should blip variation be pre-conditioned? Pre-conditioning is (at present) more memory-intensive than it should
be, but is efficient

default: F

minE.GlobalTolerance (boolean)
Are the convergence criteria applied to minimisation summed over the whole system, or per atom?

default: T

Go to top.
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2.12.8 Charge Self-Consistency

SC.LinearMixingSC (boolean)
Should Pulay mixing be used? It is recommended that this is always used

default: T

SC.LinearMixingFactor (real)
Amount of output charge density which is mixed into new charge

default: 0.5

SC.LinearMixingFactor_SpinDown (real)
Amount of output charge density which is mixed into new charge for spin down channel.

default: value of SC.LinearMixingFactor

SC.LinearMixingEnd (real)
Tolerance for end of Pulay mixing

default: self-consistency tolerance

SC.LateStageReset (integer)
If using GR-Pulay, how often is residual calculated fully (rather than interpolated) ?

default: 5

SC.MaxIters (integer)
Maximum self-consistency iterations

default: 50

SC.MaxEarly (integer)
Maximum early-stage iterations

default: 3

SC.MaxPulay (integer)
Number of iterations stored and mixed during Pulay mixing

default: 5

SC.ReadAtomicDensityFile (string)
Filename for radial tables of atomic density (rarely used: normally generated from PAOs)

default:

SC.AtomicDensityFlag (string)
values: pao/read

Flag determining how atomic densities should be found

default: pao

SC.KerkerPreCondition (boolean)
Flag determining if Kerker precondition is to be used.

default: F

SC.KerkerFactor (real)
Wave-vector magnitude used in Kerker preconditioning, it is 𝑞0 from the factor 𝑞2/

(︀
𝑞2 + 𝑞20

)︀
default: 0.1
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SC.WaveDependentMetric (boolean)
Flag determining if wave-dependent metric is to be used in Pulay mixing.

default: F

SC.MetricFactor (real)
Wave-vector magnitude used by wave-dependent metric method, it is 𝑞1 from the factor

(︀
𝑞2 + 𝑞21

)︀
/𝑞2.

default: 0.1

SC.MakeInitialChargeFromK (boolean)
Flag determining whether initial charge is made from the density matrix

default: T
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2.12.9 Density Matrix

DM.SolutionMethod (string)
values: ordern/diagon

Selects the method for finding the ground state density matrix. This can currently be either diagonalisation
(diagon: minimising the energy with respect to the density matrix elements) or an O(N) method (ordern a com-
bination of the techniques of Li et al. [E8] and Palser and Manolopoulos [E9].)

default: diagon

DM.L_range (real)
Cutoff applied to L matrix (total energy will converge with increasing range; suggested minimum for O(N)
calculations is twice largest support function range; see Linear Scaling for more details)

default: 1.0

DM.LVariations (integer)
Maximum number of variations performed in search for ground-state density matrix

default: 50

DM.MaxPulay (integer)
Maximum number of iterations stored for Pulay minimisation

default: 5

DM.MinPulayStepSize (real)
Minimum allowed step size for Pulay minimisation in Energy minimisation stage of the calculation. Note that
the actual step size is calculated by automatically, but will be constrained within the range defined by DM.
MinPulayStepSize and DM.MaxPulayStepSize. Not to be confused with the Pulay mixing step size for charge
self-consistency.

default: 0.001

DM.MaxPulayStepSize (real)
Maximum allowed step size for Pulay minimisation in Energy minimisation stage of the calculation. Not to be
confused with the Pulay mixing step size for charge self-consistency.

default: 0.1

DM.LinTol (real)
Tolerance on linearity required before switching to Pulay minimisation

default: 0.1
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DM.InvSTolerance (real)
Tolerance on iterative minimisation to find S−1. If Ω = Tr[(𝐼 − 𝑇𝑆)2]/𝑁orbitals is above this, identity will be
used

default: 0.01

DM.InvSMaxSteps (integer)
Sets the maximum number of iterations for finding S−1

default: 100

DM.InvSDeltaOmegaTolerance (real)
Tolerance which determines when the iterative minimisation to find S−1 should finish. 𝛿Ω𝑛 = 𝑁orbitals(Ω𝑛 −
Ω𝑛−1), where Ω is defined in description for DM.InvSTolerance. This parameter differs from DM.
InvSTolerance in that the iterative S−1 finder will end iteration when 𝛿Ω is less than or equal to DM.
InvSDeltaOmegaTolerance, while DM.InvSTolerance determines whether to reset S−1 to identity (i.e.
whether a satisfactory S−1 has been found) based on the final Ω produced from the iterative loop

default: 0.0001

DM.ConstantMu (boolean)

Switches between fixed Fermi level (T) and fixed number of electrons (F). You
are strongly recommended to leave at default

default: F

DM.mu (real)
Value of Fermi level for fixed Fermi level calculations

default: 0.0

Go to top.

2.12.10 Diagonalisation

Diag.NumKpts (integer)
Number of all k-points. No symmetry is applied.

default:

Diag.Kpoints (block)
Lists fractional coordinates and weights of all k-points: x_fract y_fract z_fract weight Generates the
Monkhorst-Pack mesh, an equally spaced mesh of k-points.

default:

Diag.MPMesh (boolean)
Switches on/off the Monkhorst-Pack mesh. Note: if this keyword is present in the input file, the keyword
Diag.NumKpts and the block Kpoints will be ignored.

default:

Diag.MPMesh[X/Y/Z] (integer)
Specifies the number n of k-points along the x(y,z) axis.

default: 1

Diag.GammaCentred (boolean)
Selects Monkhorst-Pack mesh centred on the Gamma point

default: F
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Diag.PaddingHmatrix (boolean)
Setting this flag allows the Hamiltonian and overlap matrices to be made larger than their physical size, so that
ScaLAPACK block sizes can be set to any value (which can significantly improve efficiency). At present, the
automatic setting of block sizes does not use this functionality; if desired, block sizes must be set manually (note
that the optimum block size is likely to be different on different machines). (Available from v1.2)

default: T

Diag.BlockSizeR (integer)
Block size for rows (See next).

default: Determined automatically

Diag.BlockSizeC (integer)
R . . . rows, C . . . columns These are ScaLAPACK parameters, and can be set heuristically by the code. Blocks are
sub-divisions of matrices, used to divide up the matrices between processors. The block sizes need to be factors
of the square matrix size (i.e.

∑︀
atoms NSF(atom)). A value of 64 is considered optimal by the ScaLAPACK

user’s guide.

If Diag.PaddingHmatrix is set to true then the block sizes can take any value, but BlockSizeR and BlockSizeC
must be the same.

default: Determined automatically

Diag.MPShift[X/Y/Z] (real)
Specifies the shift s of k-points along the x(y,z) axis, in fractional coordinates.

default: 0.0

Diag.SmearingType (integer)
Specifies the type of smearing used

0 Fermi-Dirac
1 Methfessel-Paxton

default: 0

Diag.kT (real)
Smearing temperature

default: 0.001

Diag.MPOrder (integer)
Order of Bessel function approximation to delta-function used in Methfessel-Paxton smearing

default: 0

Diag.GaussianHeight (real)

The height of Gaussian function used to determine the width of Methfessel-Paxton
approximation to delta-function (see Electronic occupation smearing)

default: 0.1

Diag.EfStepFiness (real)
Parameter controlling the finness of the Fermi energy search step used in Methfessel-Paxton smearing method
(see Electronic occupation smearing)

default: 1.0

Diag.NElecLess (Real)
The number of electrons to subtract from the total number of electrons in each spin channel, which gives the
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starting point for searching the lower bound for Fermi energy. Used in Methfessel-Paxton smearing method (see
Electronic occupation smearing)

default: 10.0

Diag.KProcGroups (integer)
Number of k-point processor groups for k-point parallelisation (see K-point parallelization)

default: 1

Diag.ProcRows (integer)
Number of rows in the processor grid for SCALAPACK within each k-point processor group

default: Determined automatically

Diag.ProcCols (integer)
Number of columns in the processor grid for SCALAPACK within each k-point processor group. The rows and
columns need to multiply together to be less than or equal to the number of processors. If ProcRows × ProcCols
< number of processors, some processors will be left idle.

default: Determined automatically

Go to top.

2.12.11 Moving Atoms

AtomMove.TypeOfRun (string)
values: static/cg/sqnm/lbfgs/md

Options:

static — Single point calculation

cg — Structure optimisation by conjugate gradients

sqnm - Stabilised Quasi-Newton Minimisation (recommended approach)

lbfgs — Structure optimisation by LBFGS (Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm)

md — Velocity Verlet algorithm

default: static

AtomMove.QuenchMD (boolean)
Selects Quenched MD for structure relaxation (with AtomMove.TypeOfRun md)

default: F

AtomMove.FIRE (boolean)
Selects FIRE method for structure relaxation (with AtomMove.TypeOfRun md)

default: F

AtomMove.NumSteps (integer)
Maximum number of steps for a structure optimisation or molecular dynamics run

default: 100

AtomMove.MaxForceTol (real)
The structure optimisation will stop when the maximum force component is less than MD.MaxForceTol

default: 0.0005 Ha/bohr
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AtomMove.MaxSQNMStep (real)
The maximum distance any atom can move during SQNM (in Bohr). Applies to the part of the search direction
not in the SQNM subspace (scaled directly by a step size, which is limited to ensure this value is not exceeded).

default: 0.2 bohr

AtomMove.Timestep (real)
Time step for molecular dynamics

default: 0.5

AtomMove.IonTemperature (real)
Initial temperature for molecular dynamics

default: 300 K for MD, 0 for Quench MD or FIRE

AtomMove.ReadVelocity (boolean)
Read velocity from file md.checkpoint (when AtomMove.RestartRun T)

or velocity.dat (when AtomMove.RestartRun F, very rare)

default: F (when AtomMove.RestartRun F)

or T (when AtomMove.RestartRun T)

AtomMove.AppendCoords (boolean)
Chooses whether to append coordinates to UpdatedAtoms.dat during atomic movement (T) or to overwrite (F)

default: T

AtomMove.OutputFreq (integer)
Frequency of output of information. Not properly implemented

default: 50

AtomMove.WriteXSF (boolean)
Write atomic coordinates to trajectory.xsf for AtomMove.TypeOfRun = md or cg, every AtomMove.
XsfFreq steps

default: T

AtomMove.XsfFreq (integer)
Frequency of output of atomic coordinates to trajectory.xsf

default: same as AtomMove.OutputFreq

AtomMove.WriteXYZ (boolean)
Write atomic coordinates to trajectory.xyz for AtomMove.TypeOfRun = md, every AtomMove.XyzFreq
steps

default: T

AtomMove.XyzFreq (integer)
Frequency of output of atomic coordinates to trajectory.xyz

default: same as AtomMove.OutputFreq

AtomMove.TestForces (boolean)
Flag for testing forces with comparison of analytic and numerical calculations. Can produce large amounts of
output

default: F

AtomMove.TestAllForces (boolean)
Switch to test all force contributions or not
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default: F

AtomMove.CalcStress (boolean)
Toggle calculation of the stress tensor. Switching off can improve performace.

default: T

AtomMove.FullStress (boolean)
Toggle calculation of the off-diagonal elements of the stress tensor, which can be expensive, but is required for
calculating certain properties.

default: F

AtomMove.AtomicStress (boolean)
Toggle calculation of atomic contributions to the stress tensor. Used in heat flux/thermal conductivity calcula-
tions. Significantly increases memory demands.

default: F

AtomMove.OptCell (boolean)
Turns on conjugate gradient relaxation of the simulation box dimensions a, b and c. Note that Atom-
Move.TypeOfRun must also be set to cg (except for method 2 below where sqnm will result in SQNM for atomic
positions and CG for cell vectors).

default: F

AtomMove.OptCellMethod (integer)
Cell optimisation method.

default: 1

Options:

1. Fixed fractional coordinates (only cell vectors)

2. Alternating atomic position and cell vector optimisation (recommended for simultaneous optimisation)

3. Simultaneous cell and atomic conjugate gradients relaxation; caution recommended (can be unstable)

AtomMove.EnthalpyTolerance (real)
Enthalpy tolerance for cell optimisation

default: 1×10−5 Ha

AtomMove.StressTolerance (real)
Stress tolerance for cell optimisation

default: 0.1 GPa

AtomMove.TargetPressure (real)
External pressure for NPT molecular dynamics and cell optimisation

default: 0.0 GPa

AtomMove.OptCell.Constraint (string)
Applies a constraint to the relaxation.

none: Unconstrained relaxation.

Fixing a single cell dimension:

a: Fix the x-dimension of the simulation box

b: Fix the y-dimension of the simulation box

c: Fix the z-dimension of the simulation box
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Fixing multiple cell dimensions:

any combination of the above separated by a space character. e.g: “a b” fixes both the x and y dimensions of the
simulation box

Fixing Ratios:

Any combination of a, b or c separated by a “/” character. e.g “c/a” fixes the initial ratio of the z-dimension to
the x-direction.

Global scaling factor:

volume: minimize the total energy by scaling each simulation box dimension by the same global scaling factor.
Search directions are set by the mean stress.

AtomMove.TestSpecificForce (integer)
Label for which force contribution to test. Note that for PAOs non-local Pulay and Hellman-Feynman forces are
found together as part of the HF calculation; 𝜑 Pulay refers to changes in 𝜑(r) when atoms move, while S Pulay
refers to changes in S when atoms move. Options:

1 Total 2 Total Hellman-Feynman 3 Total Pulay 4 Non-SC Correction 5 Non-local 𝜑 Pulay 6 KE 𝜑 Pulay 7 Local
𝜑 Pulay 8 S Pulay

default: 1

AtomMove.TestForceDirection (integer)
Direction in which atom will be moved (1=x; 2=y; 3=z)

default: 1

AtomMove.TestForceAtom (integer)
Atom to move

default: 1

AtomMove.TestForceDelta (real)
Distance atom will be moved for numerical evaluation of force

default: 10−5 bohr

AtomMove.RestartRun (boolean)
Restart a MD run. Note that this will set General.LoadL T, AtomMove.MakeInitialChargeFromSC T and
XL.LoadX T if using the extended Lagrangian. The atomic coordinates will be read from md.positions and
the velocities and extended system variables from md.checkpoint.

default: F

AtomMove.ReuseDM (boolean)
Selects the use of last-step L-matrix (ordern) or K-matrix(diagon) during MD or structure relaxation

default: T

AtomMove.ReuseSFcoeff (boolean)
Selects the use of last-step PAO coefficients of multi-site support functions during MD or structure relaxation

default: T

AtomMove.ReuseInvS (boolean)
Selects the use of T-matrix in MD run (rare)

default: F

AtomMove.SkipEarlyDM (boolean)
Selects the skip of earlyDM calculation in MD run

default: F

2.12. Input tags 69



CONQUEST Documentation, Release 1.0.7-pre

AtomMove.McWeenyFreq (integer)
McWeeny step is applied every N steps (with “AtomMove.ReuseDM T”)

default:

AtomMove.ExtendedLagrangian (boolean)
Selects XL-BOMD (with “AtomMove.ReuseDM T”)

default: F

AtomMove.FixCentreOfMass (boolean)
Remove the centre of mass velocity at every time step

default: T

Go to top.

2.12.12 Molecular Dynamics

MD.Ensemble (string)
values: nve/nvt/npt/nph

The molecular dynamics ensemble

default: nve

MD.Thermostat (string)
values: none/nhc/berendsen/svr

Thermostat type

none
No thermostat (used for calculating temperature only)

berendsen
Berendsen weak coupling thermostat

svr
Stochastic velocity rescaling

default: none

MD.Barostat (string)
values: none/berendsen/iso-mttk/ortho-mttk/mttk

Barostat type. The following are the only valid thermostat/barostat combinations for the NPT ensemble:
berendsen/ berendsen, nhc/ pr, svr/ pr

none
No barostat (used for calculating pressure only)

berendsen
Berendsen weak coupling barostat

pr
Parrinello-Rahman (extended system) barostat

default: none

MD.tauT (real)
Coupling time constant for thermostat. Required for Berendsen thermostat, or if MD.CalculateXLMass = T.
Note that this number means different things for the Berendsen and NHC thermostats.

default: 1.0
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MD.TDrag (real)
Add a drag coefficient to the thermostat. The thermostat velocities are reduced by a factor 1− 𝜏/𝐷𝑇 every step.

default: 0.0

MD.nNHC (integer)
Number of Nosé-Hoover thermostats in chain

default: 5

MD.CellNHC (boolean)
Use a separate Nosé-Hoover chain for thermostating the unit cell (NPT only)

default: T

MD.NHCMass (blocks)
< 𝑛1 >< 𝑛2 >< 𝑛3 > . . . Masses of NHC heat baths

default: 1 1 1 1 1

MD.CellNHCMass (block)
< 𝑛1 >< 𝑛2 >< 𝑛3 > . . . Masses of NHC heat baths for unit cell

default: 1 1 1 1 1

MD.BulkModulusEst (real)
Bulk modulus estimate for system. Only necessary for Berendsen weak pressure coupling (MD.Barostat =
berendsen or MD.BerendsenEquil > 0)

default: 100

MD.tauP (real)
Coupling time constant for barostat. Required for Berendsen barostat, or if MD.CalculateXLMass = T. Note that
this number means different things for the Berendsen and Parrinello-Rahman barostats.

default: 10.0 (Berendsen) or 100.0 (MTTK)

MD.PDrag (real)
Add a drag coefficient to the barostat. The barostat velocities are reduced by a factor 1− 𝜏/𝐷𝑃 every step. This
is useful when the lattice parameters are varying rapidly.

default: 0.0

MD.BoxMass (real)
Mass of box for extended system formalism (MTTK barostats)

default: 1

MD.CalculateXLMass (boolean)
Calculate the mass of the extended system components (thermostats, barostat) using the MTTK formulae.

default: T

MD.nYoshida (integer)
values: 1/3/5/7/15/25/125/625

Order of Yoshida-Suzuki integration

default: 1

MD.nMTS (integer)
Number of time steps in inner loop of MTS scheme

default: 1
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MD.BerendsenEquil (integer)
Equilibrate the system for 𝑛 steps using Berendsen weak coupling

default: 0

MD.TDEP (boolean)
Dump data in a format readable by the Temperature Dependent Effective Potential (TDEP) code.

default: F

MD.ThermoDebug (boolean)
Print detailed information about thermostat and extended variables in thermostat.dat

default: F

MD.BaroDebug (boolean)
Print detailed information about barostat and extended variables in barostat.dat

default: F

MD.VariableTemperature (boolean)
Simulation with a variable temperature if .True.

default: F

MD.VariableTemperatureMethod (string)
Type of temperature profile. Only linear temperature profile is implemented.

default: linear

MD.VariableTemperatureRate (real)
Change rate for the temperature. In units of K/fs. If positive, heating. If negative, cooling.

default: 0.0

MD.InitialTemperature(real)
Initial temperature.

default: same as AtomMove.IonTemperature

MD.FinalTemperature(real)
Final temperature.

default: same as AtomMove.IonTemperature

Go to top.

2.12.13 Spin Polarisation

Spin.SpinPolarised (boolean)
Determines if the calculation is spin polarised (collinear) or non-spin polarised.

default: F

Spin.FixSpin (boolean)
Determines if spin populations are to be fixed. Only read if Spin.FixPolarised is set.

default: F

Spin.NeUP (real)
Total number of electrons in spin up channel at start of calculation.

default: 0.0
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Spin.NeDN (real)
Total number of electrons in spin down channel at start of calculation.

default: 0.0

Go to top.

2.12.14 DeltaSCF

flag_DeltaSCF (boolean)
Selects delta SCF calculation

default:

DeltaSCF.SourceLevel (integer)
Eigenstate number to remove electron from (source)

default:

DeltaSCF.TargetLevel (integer)
Eigenstate number to promote electron to (target)

default:

DeltaSCF.SourceChannel (integer)
Spin channel for electron source

default:

DeltaSCF.TargetChannel (integer)
Spin channel for electron target

default:

DeltaSCF.SourceNFold (integer)
Allows selection of more than one level for excitation source (N-fold)

default:

DeltaSCF.TargetNFold (integer)
Multiplicity of target (N-fold)

default:

DeltaSCF.LocalExcitation (boolean)
Select an excitation localised on a group of atoms

default:

DeltaSCF.HOMOLimit (integer)
How many states down from HOMO to search for localised excitation

default:

DeltaSCF.LUMOLimit (integer)
How many states up from LUMO to search for localised excitation

default:

DeltaSCF.HOMOThresh (real)
(please fill in)

default:
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DeltaSCF.LUMOThresh (real)
Threshold for identifying localised excitation (sum over square moduli of coefficients)

default:

Go to top.

2.12.15 Constrained DFT (cDFT)

cDFT.Perform_cDFT (boolean)
Selects cDFT operation

default:

cDFT.Type (integer)
values: 1 or 2

Selects constraint to be for absolute charge on groups (1) or difference between two groups (2)

default:

cDFT.MaxIterations (integer)
Maximum iterations permitted

default:

cDFT.Tolerance (real)
Tolerance on charge

default:

cDFT.NumberAtomGroups (integer)
Number of groups of atoms

default:

cDFT.AtomGroups (block)
Block with each line specifying: Number of atoms, target charge, label for block. For each line, there should be
a corresponding block with the appropriate label; the block consists of a list of atom numbers for the atoms in
the group

Go to top.

2.12.16 vdW-DF

vdWDFT.LDAFunctionalType (string)
Selects LDA functional to use with vdW-DF

default:

Go to top.
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2.12.17 DFT-D2

DFT-D2_range (real)
DFT-D2 cutoff range (bohr)

default:

Go to top.

2.12.18 XL-BOMD

XL.Kappa (real)
Value of kappa

default: 2.0

XL.PropagateX (boolean)
Selects the propagation of LS in XL-BOMD

default: T

XL.PropagateL (boolean)
Selects the propagation of L matrix in XL-BOMD (inappropriate)

default: F

XL.Dissipation (boolean)
Selects the addition of dissipative force

default:

XL.MaxDissipation (integer)
Order of dissipative force term

default: 5

XL.Integrator (string)
Selects the Verlet method or velocity Verlet method

default: velocityVerlet

XL.ResetFreq (integer)
Frequency to reset the propagation of X matrix in XL-BOMD

default: 0 (no reset)

Go to top.

2.12.19 Advanced and obscure tags

General

General.LoadInvS (boolean)
Selects loading of inverse S matrix from previous step (not recommended)

default: F

General.NeutralAtomProjector (boolean)
Selects projector expansion of neutral atom potential; still in development. Only for expert use. (Allows speci-
fication of maximum l value for projectors and list of number of projectors for each l value.)
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default: F

General.PAOFromFiles (boolean)
Allows you to give explicit file name for .ion files in atom block

default: F

General.MaxTempMatrices (integer)
Allows user to increase number of temporary matrices; sometimes required for wavefunction output.

default: 100

General.EwaldAccuracy (real)
Accuracy required for Ewald sum

default:1×10−10

General.CheckDFT (boolean)
Calculates DFT energy using output density

default: F

General.AverageAtomicDiameter (real)
Related to space-filling

default: 5.0

General.GapThreshold (real)
Related to space-filling

default: 2.0*(largest support radius)

General.only_Dispersion (boolean)
Selects only DFT_D2 calculation (no electronic structure etc)

General.MixXCGGAInOut (real)
For non-SCF calculations only, chooses how to mix the proportions of GGA XC stress contribution (from the
change of the electron density gradient) found using input (0.0 gives pure input) and output (1.0 gives pure
output) densities. Note that this is an approximation but varying the value significantly away from 0.5 will give
inconsistency between stress and energy.

default: 0.5

Go to top.

Atomic Specification

Atom.ValenceCharge (real)
Valence charge of species (e.g. 4 for carbon, 6 for oxygen)

default: read from ion file

Atom.NumberOfSupports (integer)
Number of support functions per atom for a species. Don’t confuse support functions and PAOs ! Support
functions can be expanded in a basis set of PAOs or blips

default: number of PAOs read from ion file

Atom.SupportFunctionRange (real)
Confinement radius for the support functions for a given species

default: maximal PAO radius read from ion file
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Atom.SupportGridSpacing (real)
The spacing of the blip grid (if using). Equivalent (under certain circumstances) to a maximum g-vector of
𝜋/SupportGridSpacing plane wave cutoff as region radius and L matrix radius go to infinity. Not used for PAO
calculations. N.B. Grid.GridCutoff will be reset to at least half SupportGridSpacing if too small.

default: none

Atom.NonLocalFactor (real)
This is an adjustment factor: the Hamiltonian range is (strictly) 2× (support function radius + non-local projector
radius). However, generally without affecting the results, the Hamiltonian range can be set to 2 × (support
function radius + non_local_factor× non-local projector radius). If you have non_local_factor = 1.0 then you get
the full range, if 0.0 then the same range as the S matrix.

default: 0.0

Atom.InvSRange (real)
Range of inverse S matrix (though actual matrix range is twice this for consistency with S matrix range).

default: support function range

Atom.SpinNeUp (real)
Specify the population of spin-up electrons for setting initial spin state of atomic densities

default: 0.0

Atom.SpinNeDn (real)
Specify the population of spin-down electrons for setting initial spin state of atomic densities

default: 0.0

Go to top.

I/O General

IO.Partitions (string)
Name for file containing distribution of partitions over processors (generated by accompanying utilities)

default: make_prt.dat

IO.TimingOn (boolean)
Whether time information will be measured and written to output

default: F

IO.TimeAllProcessors (boolean)
Specifies whether time information will be written for all processors or just for the input/output process (the
default)

default: F

IO.WriteTimeFile (boolean)
Whether time files are written or not. This flag will be ignored if IO.TimeAllProcessors is true, in which
case time files are always written.

default: T

IO.TimeFileRoot (string)
Root to be used in the time files, with an extension indicating the processor number, e.g. .001

default: time

Go to top.
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I/O Atomic Coordinates

IO.PdbAltLoc (string)
In case of PDB files with multiple locations selects an alternate location. Values: A, B, etc., as listed in the pdb
file. Note that if the keyword is present in the input file but no value is given, only the parts of the system without
any alternate location specification will be taken into account

default: none

IO.PdbOut (boolean)
Format of the output coordinate file. Writes a PDB file if set to T. In that case, either the input must be in pdb
format or a PDB “template” file needs to be specified (keyword General.PdbTemplate)

default: F

IO.PdbTemplate (string)
A file used as a template for writing out coordinate files in the PDB format, i.e., the output file will contain the
same information as the template, only the atomic coordinates will be overwritten. If the input file is in PDB
format, it will also be used as the template, although this can still be overwritten with this keyword

default: coordinate file

IO.AtomOutputThreshold (integer)
Threshold below which atomic positions are output on initialisation, and atomic forces are output at the end of a
static run.

default: 200

Go to top.

Basis Set

Basis.BasisSet (string)
values: blips/PAOs

Selects the basis set in which to expand the support functions (localised orbitals).

Options:

• PAOs — Pseudo-atomic orbitals [E10]

• blips (default) — B-splines [E11]

default: PAOs

Basis.LoadBlip (boolean)
Load blip or PAO coefficients from file. If set to T, for blips the code will look for a set of files containing blip
coefficients, which is taken to be blip_coeffs.nnn, where nnn is processor number (padded with zeroes);
for PAOs, the code will look for a single file which is supp_pao.dat by default, but can be set with Basis.
SupportPaoFile

default: F

Basis.SupportPaoFile (string)
Specifies filename for PAO coefficients

default: supp_pao.dat

Basis.UsePulayForPAOs (boolean)
Determines whether to use Pulay DIIS for minimisation of PAO basis coefficients

default: F
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Basis.PaoKspaceOlGridspace (real)
Determines the reciprocal-space grid spacing for PAO integrals

default: 0.1

Basis.PaoKspaceOlCutoff (real)
Determines the cutoff for reciprocal-space grid spacing for PAO integrals

default: 1000.0

Basis.PAOs_StoreAllAtomsInCell (boolean)
Determines whether coefficients for all atoms in cell are stored on each processor (improves speed but potentially
memory expensive, particularly with large systems) or only local atom coefficients (increases communication
overhead)

default: T

Basis.SymmetryBreaking (boolean)
Determines whether symmetry-breaking assignment of PAOs to support functions is allowed. In general, it is
highly recommended that all atoms have sufficient support functions to span the space of angular momenta used
in PAOs (i.e. 2𝑙+1 support functions for each 𝑙 channel used for PAOs); reducing the number potentially results
in symmetry breaking and unphysical behaviour

default: F

Basis.PaoNormFlag (integer)
Determines whether PAOs are normalised

default: 0

Basis.TestBasisGradients (boolean)
Chooses whether gradients of energy with respect to basis function coefficients should be tested (using numerical
vs. analytical gradients). WARNING : this produces large amounts of data

default: F

Basis.TestBasisGradTot (boolean)
Test total gradient ?

default: F

Basis.TestBasisGradBoth (boolean)
Test both S- and H-derived gradients (i.e. gradients arising from change of S or H when support functions vary)
?

default: F

Basis.TestBasisGrad_S (boolean)
Test S-derived gradient ?

default: F

Basis.TestBasisGrad_H (boolean)
Test H-derived gradient ?

default: F

Basis.PAOs_OneToOne (boolean)
Assign PAOs to individual support functions (implies no support function optimisation)

default: F

Go to top.
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Integration Grid

Grid.PointsAlong[X/Y/Z] (integer)
Grid points along x (y,z). Overwrites the values set by Grid.GridCutoff. The default FFT code requires that the
number of grid points have prime factors of 2, 3 or 5

default: 0

Grid.InBlock[X/Y/Z] (integer)
This is the size of a grid point block (i.e., how many grid points are in one block in the x (y,z) direction), which
must be a multiple of 2, 3, or 5 (larger values may impact on parallel efficiency).

default: 4

Grid.ReadBlocks (boolean)
If specified, the code reads information about blocks from the file make_blk.dat

default: F

Go to top.
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2.13 Generating PAOs

2.13.1 Introduction

CONQUEST includes a utility for generating the PAO basis files (MakeIonFiles with source code in the directory
tools/BasisGeneration), and we also provide pseudopotential files (from the PseudoDojo database). The input
files will generate a reasonable default basis set (though we can offer no guarantees: users must test the accuracy and
convergence of their basis sets). Here we will discuss how to generate both default and custom basis sets. Full details
of the basis sets can be found in a recent paper [GP1].

2.13.2 Default basis sets

To generate basis functions, radii for the PAOs must be specified; by default, the utility will set these radii automatically.
The radii can be set so that the different shells either share the same radii, or share an energy shift associated with
confinement. The default behaviour is to generate basis sets where shells share radii (to change this, add the line
Atom.Cutoffs energy to the input file). There are four default basis set sizes:

• minimal (single zeta, SZ)

• small (single zeta and polarisation, SZP)

• medium (double zeta, single polarisation, DZP)

• large (triple zeta, triple polarisation, TZTP)

Generally, reasonable results will be obtained with a medium (DZP) basis, though this should always be tested. Minimal
and small basis sets are much faster (and are the only basis sets compatible with linear scaling), but less reliable. The
large basis set will be slower (often it is twice the size of the medium basis set, so diagonalisation will be up to eight
times slower) but more reliable and accurate.

We note that Group I and II atoms are a little problematic: the standard approach for most other elements may produce
a somewhat limited basis set, so we have created a more accurate, customised input file for these elements (with the
exception of Na and Mg, where the pseudopotential does not include l=2 components, so the default approach is all
that is possible). These should be tested carefully.
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2.13.3 Specifying basis sets

The generation utility gives the user complete control over the basis sets that are produced. As an example, we reproduce
below the input file for strontium (Sr) and discuss the layout.

%block Sr
Atom.PseudopotentialFile Sr.in
Atom.VKBFile Sr.pot
Atom.Perturbative_Polarised F
Atom.PAO_N_Shells 5
Atom.BasisBlock SrBlock
%endblock

%block SrBlock
# n, l, number of zetas
4 0 1
4 1 1
5 0 2
5 1 1
4 2 1
# Radii for PAOs (bohr)
4.0
5.0
10.1 5.7
10.1
10.1
%endblock

In this case, we specify five shells (combinations of n and l) via the Atom.PAO_N_Shells tag, with polarisation func-
tions found simply by solving the Schrodinger equation in the usual way (the alternative, perturbative polarisation, is
discussed below). We must then specify a block that defines these shells (Atom.BasisBlock SrBlock). Within that
block, we give the number of zeta functions for each (n,l) pair (specified as a line n l nzeta) followed by the radii for
the zeta functions.

Setting radii for the different shells is a complex process which requires considerable time and care, with an extensive
literature; we cannot provide significant help, but only make suggestions. In the first instance, the default radii are
a good starting point. Note that the default setting Atom.Cutoffs radii averages the radii between shells, while
Atom.Cutoffs energy finds different radii for each shell (so that the energy change due to confinement is the same
for all shells). We recommend starting from one of these sets of radii, and then testing and optimising the radii against
some key properties of the system.

A common approach to the generation of polarisation functions (i.e. unoccupied states) is to perturb a valence state
(typically the highest energy valence state) to generate a function with angular momentum increased by one; this is the
default behaviour. In this case, the radii for the polarisation state should be the same as the shell being polarised (so
for Si, we would perturb the 3p (n=3, l=1) state to get the 3d (n=3, l=2) state), and at present the same number of zeta
functions must be specified for the polarisation shell as for the unperturbed shell. For instance, for Si:

%block Si
Atom.PseudopotentialFile Si.in
Atom.VKBFile Si.pot
Atom.PAO_N_Shells 3
Atom.BasisBlock SiBlock

(continues on next page)
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(continued from previous page)

%endblock

%block SiBlock
# n, l, number of zetas
3 0 2
3 1 2
3 2 2
# Radii for PAOs (bohr)
8.0 4.0
8.0 4.0
8.0 4.0
%endblock

The perturbative option can be turned off by specifying Atom.Perturbative_Polarised F in the input file. (Note that in
the strontium example above we have specified two polarisation shells, so cannot use the perturbative approach.)

By default, the utility calculates radii which are shared between shells; it is possible to specify instead shared energy
shifts using Atom.Cutoffs energy, but this can only be done for valence shells, and so must use the perturbative
polarisation approach for polarisation functions.

Go to top.

2.13.4 Compiling

To compile the code, the same system.make can be used as is specified for the main code. Once this is done, simply
issue the ccommand make in the tools/BasisGeneration directory. The resulting executable will be placed in the
bin directory.

Go to top.

2.13.5 Generating new pseudopotentials

CONQUEST is supplied with a complete set of pseudopotentials for the elements in the PseudoDojo database
(covering LDA, PBE and PBEsol exchange-correlation functionals). In order to generate new pseudopotential
files, users will need the Hamann pseudopotential code ONCVPSP v3.3.1 (the current release) and the patch file
Conquest_ONCVPSP_output.patch which is in the tools directory. After patching and compiling the Hamann
code (to patch the code, copy the patch to the ONCVPSP src directory, and issue the command patch -p0 <
Conquest_ONCVPSP_output.patch; we cannot provide any support for this) the oncvpsp.x utility will generate
a file VPS.dat which should be renamed (something like element.pot as in the CONQUEST pseudopotential files)
and specified in the input file using the Atom.VKBFile tag.

Go to top.
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CHAPTER

THREE

TUTORIALS

• Introductory Tutorials

• Structural Relaxation Tutorials

• Molecular Dynamics Tutorials

• Basis Function Tutorials

• Advanced Tutorials

3.1 Introductory Tutorials

These introductory tutorials will give you an overview of how to run Conquest, the files and parameter settings required,
and what output to expect.

3.1.1 Bulk silicon: input, output and SCF

We start with a very basic introduction to the input required for CONQUEST, the output generated, and the self-
consistency (SCF) procedure; it uses the same system as the first of the examples in the manual, but provides more
detail. The files are found in docs/tutorials/Introductory_1.

CONQUEST requires the following files to run:

• The input file: Conquest_input

• A coordinates file (name set in Conquest_input; no default)

• Ion files (suffix .ion), which provide the pseudopotentials and pseudo-atomic orbitals (PAOs)

The input file requires the user to provide a certain amount of information. The minimal file that is provided for this
tutorial gives most of these:

# Input/Output
IO.Title Bulk Si 8 atoms static
IO.Coordinates ionpos.dat

# General Parameters
General.NumberOfSpecies 1

%block ChemicalSpeciesLabel
1 28.0850 Si_SZ
%endblock

(continues on next page)
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# Moving Atoms
AtomMove.TypeOfRun static

# Finding the density matrix
DM.SolutionMethod diagon

# k-points
Diag.GammaCentred T
Diag.MPMesh T
Diag.MPMeshX 2
Diag.MPMeshY 2
Diag.MPMeshZ 2

The key entries are:

• the coordinate file (IO.Coordinates);

• the number of species (General.NumberOfSpecies);

• the specification for the species (the block ChemicalSpeciesLabel gives the atomic mass and the ion file name
for all species);

• the type of run (AtomMove.TypeOfRun which defaults to static)

The Brillouin zone sampling must be investigated carefully, as for all periodic electronic structure calculations. The
Monkhorst-Pack mesh (Diag.MPMesh) offers a convenient way to do this systematically. The job title is purely for
reference. Further parameters are discussed in the next tutorial

• The coordinate file IO.Coordinates

• The number of species General.NumberOfSpecies

• The ion files for the species

• The basic input file

• The output

• Changing the output level and destination

• Controlling the SCF (tolerance and iterations, options)

3.1.2 Bulk silicon: parameters to converge

• The files that are needed

– Coordinates

– Ion files

– Input file: Conquest_input

• Integration grid

• Brillouin zone sampling

• Possibly basis set size

84 Chapter 3. Tutorials



CONQUEST Documentation, Release 1.0.7-pre

3.1.3 Bulk silicon: analysis

• The files that are needed

– Coordinates

– Ion files

– Input file: Conquest_input

• Total DOS

• Atom-projected DOS

• Band structure output

• Charge density and bands

• Atomic charges

3.2 Structural Relaxation Tutorials

We now turn to structural relaxation, covering both atomic relaxation and simulation cell relaxation.

3.2.1 Atomic relaxation: lbfgs

• Parameters that are needed

• The output

• Files in Structural_relaxation_1

3.2.2 Atomic relaxation: Conjugate gradients

• Parameters that are needed

• The output

• Files in Structural_relaxation_2

3.2.3 Atomic relaxation: Quenched MD

• Parameters that are needed

• The output

• Files in Structural_relaxation_3

3.2. Structural Relaxation Tutorials 85



CONQUEST Documentation, Release 1.0.7-pre

3.2.4 Cell relaxation: Conjugate gradients

• Parameters that are needed

• The output

• Files in Structural_relaxation_4

3.3 Molecular Dynamics Tutorials

These tutorials introduce molecular dynamics (MD) in CONQUEST, though not the topic of MD itself, for which you
should consult an appropriate textbook.

3.3.1 Molecular dynamics: NVE

• Parameters that are needed

• The output

• Files in MD_1

3.3.2 Molecular dynamics: NVT with SVR

• Parameters that are needed

• The output

• Files in MD_2

3.3.3 Molecular dynamics: NVT with Nose-Hoover chains

• Parameters that are needed

• The output

• Files in MD_3

3.3.4 Molecular dynamics: NPT with SVR and Parrinello-Rahman

• Parameters that are needed

• The output

• Files in MD_4
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3.3.5 Molecular dynamics: NPT with Nose-Hoover chains

• Parameters that are needed

• The output

• Files in MD_5

3.3.6 Molecular dynamics: Continuing a run

• Parameters that are needed

• The output

• Files in MD_6

3.4 Basis Function Tutorials

We now introduce details of the basis sets used in CONQUEST, and how they are specified and optimised.

3.4.1 MSSF: local filter diagonalisation

• Parameters that are needed

• The output

• Files in Basis_sets_1

3.4.2 MSSF: Optimisation

• Parameters that are needed

• The output

• Files in Basis_sets_2

3.5 Advanced Tutorials

These tutorials cover more advanced topics in CONQUEST, and assume a reasonable familiarity and confidence with
the general operation of the code.

3.5.1 Initialising spins

• Parameters that are needed

• The output

• Files in Advanced_1
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3.5.2 An introduction to linear scaling

• Parameters that are needed

• The output

• Files in Advanced_2
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CHAPTER

FOUR

THEORY

• Background on energy, forces and stress

• Structural relaxation: Theory

• Molecular Dynamics: Theory

4.1 Background on energy, forces and stress

A number of different ways of formulating the energy exist in Conquest at the moment, involving both self-consistent
and non-self-consistent densities and potentials, both with and without the neutral atom potential. With self-
consistency, all formulations should give the same result, though numerical issues may give small differences; without
self-consistency the Harris-Foulkes functional is more accurate.

4.1.1 Self-consistent calculations

We define the energy in Conquest in two ways that are equivalent at the self-consistent ground state. The Harris-Foulkes
energy is given as:

𝐸𝐻𝐹 = 2Tr [𝐾𝐻] + ∆𝐸𝐻𝑎 +∆𝐸𝑋𝐶 + 𝐸𝐼𝐼

where the first term is the band structure energy, equivalent to the sum over the energies of the occupied states, the
second two terms compensate for double counting and the final term gives the ion-ion interaction:

𝐸𝐼𝐼 =
1

2

⎛⎝∑︁
𝑖𝑗

𝑍𝑖𝑍𝑗

| R𝑖 −R𝑗 |

⎞⎠
The Hamiltonian is defined as:

�̂� = 𝑇 + 𝑉𝐿 + 𝑉𝑁𝐿 + 𝑉𝐻𝑎 + 𝑉𝑋𝐶

where the operators are the kinetic energy, the local and non-local pseudopotentials, the Hartree potential, defined as
𝑉𝐻𝑎 =

∫︀
𝑑r′𝑛(r′)/ | r − r′ |, and the exchange-correlation potential. The alternative form, often known as the DFT

energy, is:

𝐸𝐷𝐹𝑇 = 2Tr [𝐾(𝑇 + 𝑉𝐿 + 𝑉𝑁𝐿)] + 𝐸𝐻𝑎 + 𝐸𝑋𝐶 + 𝐸𝐼𝐼

with the Hartree energy defined as usual:

𝐸𝐻𝑎 =
1

2

∫︁ ∫︁
𝑑r𝑑r′

𝑛(r)𝑛(r′)

| r− r′ |
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along with the exchange-correlation energy:

𝐸𝑋𝐶 =

∫︁
𝑑r𝜖𝑋𝐶 [𝑛]𝑛(r)

For the Harris-Foulkes and DFT energies to be equal, it is easy to see that the double counting correction terms in the
Harris-Foulkes formalism must be:

∆𝐸𝐻𝑎 = −𝐸𝐻𝑎 = −1

2

∫︁ ∫︁
𝑑r𝑑r′

𝑛(r)𝑛(r′)

| r− r′ |

and

∆𝐸𝑋𝐶 =

∫︁
𝑑r (𝜖𝑋𝐶 [𝑛]− 𝑉𝑋𝐶 [𝑛])𝑛(r)

When calculating forces and stress with self-consistency, we generally use the differentials of the DFT energy rather than
the Harris-Foulkes energy; this enables us to separate contributions that are calculated in different ways (in particular
on those that are calculated on the integration grid from those that are not).

Go to top.

Neutral atom potential

In a DFT code using local orbitals as basis functions, the total energy is most conveniently written in terms of the
interaction of neutral atoms: this is simply a reformulation of the total energy which, in particular, reduces the ion-
ion interaction to a sum over short-range pair-wise interactions. The charge density of interest is now the difference
between the total charge density and a superposition of atomic densities, notated as 𝛿𝑛(r) = 𝑛(r) −

∑︀
𝑖 𝑛𝑖(r) for

atomic densities 𝑛𝑖(r). We write:

𝐸𝐷𝐹𝑇,𝑁𝐴 = 2Tr [𝐾(𝑇 + 𝑉𝑁𝐴 + 𝑉𝑁𝐿)] + 𝐸𝛿𝐻𝑎 + 𝐸𝑋𝐶 + 𝐸𝑆𝐼𝐼

where the second term is defined as:

𝐸𝛿𝐻𝑎 =
1

2

∫︁ ∫︁
𝑑r𝑑r′

𝛿𝑛(r)𝛿𝑛(r′)

| r− r′ |

The final term, the screened ion-ion interaction, is short-ranged, and written as:

𝐸𝑆𝐼𝐼 =
1

2

⎛⎝∑︁
𝑖𝑗

𝑍𝑖𝑍𝑗

| R𝑖 −R𝑗 |
−
∫︁
𝑑r𝑛𝑖(r)𝑉𝐻𝑎,𝑗(r)

⎞⎠
where 𝑉𝐻𝑎,𝑖(r) is the Hartree potential from the atomic density 𝑛𝑖(r). We define the neutral atom potential for an atom
as 𝑉𝑁𝐴,𝑖(r) = 𝑉𝐿,𝑖(r) + 𝑉𝐻𝑎,𝑖(r), combining the local potential and the Hartree potential for the atomic density; the
overall neutral atom potential is given as the sum over the atomic densities, 𝑉𝑁𝐴(r) =

∑︀
𝑖 𝑉𝑁𝐴,𝑖(r). If we write the

pseudo-atomic density as 𝑛𝑃𝐴𝐷(r) =
∑︀

𝑖 𝑛𝑖(r) then we can also write 𝑉𝑁𝐴(r) = 𝑉𝐿(r) + 𝑉𝐻𝑎,𝑃𝐴𝐷(r).

In this case, we can write the Harris-Foulkes energy as:

𝐸𝐻𝐹 = 2Tr [𝐾𝐻] + ∆𝐸𝐻𝑎 +∆𝐸𝑋𝐶 + 𝐸𝑆𝐼𝐼

with the Hamiltonian defined as:

�̂� = 𝑇 + 𝑉𝑁𝐴 + 𝑉𝑁𝐿 + 𝑉𝛿𝐻𝑎 + 𝑉𝑋𝐶

where 𝑉𝛿𝐻𝑎(r) =
∫︀
𝑑r′𝛿𝑛(r′)/ | r− r′ |. Accordingly, the double counting Hartree correction term has to change:

∆𝐸𝐻𝑎 = −𝐸𝛿𝐻𝑎 −
∫︁
𝑑r𝛿𝑛(r)

∑︁
𝑖

𝑉𝐻𝑎,𝑖(r).

Go to top.
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4.1.2 Non-self-consistent calculations

In non-self-consistent calculations, we use the Harris-Foulkes functional, along with a reasonable guess for the input
density, which is normally taken as the superposition of atomic densities, 𝑛𝑖𝑛(r) and write:

𝐸𝑁𝑆𝐶 = 2Tr [𝐾𝐻] + ∆𝐸𝐻𝑎 [𝑛𝑖𝑛] + ∆𝐸𝑋𝐶 [𝑛𝑖𝑛] + 𝐸𝐼𝐼

Notice that we effectively have two densities being used here: 𝑛𝑖𝑛 (which is normally the superposition of atomic
densities used in the neutral atom case) and and effective output density, 𝑛𝑜𝑢𝑡 =

∑︀
𝑖𝑗 𝜑𝑖𝐾𝑖𝑗𝜑𝑗 which comes from the

band energy (first term); this complicates the calculation of forces and stress compared to the self-consistent case, as
we have to consider contributions from both densities.

For the neutral atom potential, 𝛿𝑛(r) = 0 by definition, which also means that 𝐸𝛿𝐻𝑎 = 0 and ∆𝐸𝐻𝑎 = 0.

Go to top.

4.1.3 Partial core corrections

Also known as non-linear core corrections, partial core corrections (PCC) [EFS1] add a model core charge to the
pseudopotential to allow for the non-linear exchange-correlation interation between core and valence charge (which is
linearised in standard pseudopotentials); this generally improves the accuracy of the pseudopotential. The exchange-
correlation potential is evaluated in terms of the combined charge density, 𝑛𝑣(r) + 𝑛𝑐(r) where the valence charge is
input or output charge density defined above: 𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]. The exchange-correlation energy becomes:

𝐸𝑋𝐶 =

∫︁
𝑑r (𝑛𝑣(r) + 𝑛𝑐(r))𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐] .

Once this change to the charge density has been made, there is no change to the DFT energy. However, the dou-
ble counting term for Harris-Foulkes needs redefining, since XC contribution to the band energy is 2𝑇𝑟[𝐾𝑉𝑋𝐶 ] =∫︀
𝑑r𝑛𝑣(r)𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]. We write:

∆𝐸𝑋𝐶 =∫︁
𝑑r (𝑛𝑣(r) + 𝑛𝑐(r)) 𝜖𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]−

∫︁
𝑑r𝑛𝑣(r)𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]

=∫︁
𝑑r𝑛𝑐(r)𝜖𝑋𝐶 [𝑛𝑣 + 𝑛𝑐] +

∫︁
𝑑r (𝜖𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]− 𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐])𝑛𝑣(r)

There is an extra factor of
∫︀
𝑑r𝑛𝑐(r)𝜖𝑋𝐶 [𝑛𝑣 + 𝑛𝑐] over and above the usual term.

Go to top.

4.1.4 Forces and Stresses

It is important that the forces and stresses be the exact derivatives of the energy, for consistency. In particular, this
means that as the energy is calculated in different ways for different contributions, the force or stress contribution must
be calculated in the same way.

Go to top.
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Forces

Forces are defined as the change in energy with respect to atomic positions; as the basis functions move with the atoms,
these changes will also include Pulay terms. The forces found in Conquest are documented extensively elsewhere
[EFS2, EFS3] though the changes needed to account for PCC, particularly in the non-self-consistent case, have not
been published and are given here for completeness. As well as the Hellmann-Feynman forces (which come from the
movement of the local and non-local pseudopotentials with the atoms) we define Pulay forces (divided into two parts,
known as phi-Pulay which come from changes in the Hamiltonian matrix, and S-Pulay, which come from changes in
the overlap matrix; the phi-Pulay forces are calculated in three contributions, which depend on how the respective parts
of the Hamiltonian matrix are calculated: the kinetic energy; the non-local pseudopotential; and the remaining terms
which are all found on the integration grid). The ion-ion interactions also contribute forces.

The inclusion of PCC adds an extra term to the forces in all calculations, which comes from the change of the core
density as the atoms move; the force on atom 𝑖 is given as:

F𝑃𝐶𝐶
𝑖 = −

∫︁
𝑑r∇𝑖𝑛

𝑐
𝑖 (r)𝑉𝑋𝐶 [𝑛𝑣 + 𝑛𝑐]

If the non-self-consistent formalism is used, then a further term is added (the non-self-consistent force changes) to
include the gradient of the core charge. The non-self-consistent force is now written as:

F𝑁𝑆𝐶
𝑖 = −

∫︁
𝑑r𝑉𝛿𝐻𝑎(r)∇𝑖𝑛

𝑣
𝑖 (r)−

∫︁
𝑑r𝛿𝑛(r)𝑉 ′

𝑋𝐶

[︀
𝑛𝑖𝑛𝑣 + 𝑛𝑐

]︀
(∇𝑖𝑛

𝑣
𝑖 (r) +∇𝑖𝑛

𝑐
𝑖 (r))

where 𝑉 ′
𝑋𝐶 is the derivative of the exchange-correlation potential with respect to charge density.
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Stress

The stress includes all contributions to the change of energy with the lattice constants; the calculation of stress in
Conquest is documented in a paper being prepared for publication, but we give a brief overview here. As Conquest
uses orthorhombic cells, only the diagonal stress components (𝜎𝛼𝛼) are calculated.

In most cases, forces also contribute to the stress; it is easy to show that the stress contribution is given by:

𝜎𝛼𝛼 =
∑︁
𝑖

𝐹𝑖𝛼𝑅𝑖𝛼

where 𝑅𝑖𝛼 is the position of the atom. As well as these contributions, there are more subtle terms. Any energies
calculated on the grid will contribute to the stress as the integration grid changes with cell size (the stress is simply
the energy calculated), and the Hartree potential contributes a term related to the change in the reciprocal lattice vec-
tors (as it is calculated by Fourier transforming the charge density). If the exchange-correlation functional is a GGA
functional, then a further term coming from the change of the gradient of the density with the cell size arises. (For
non-self-consistent calculations this leads to some complications, as this term technically requires both input and output
densities; at present, we approximate this as a mixture of the term calculated with input density and the term calculated
with output density; the proportion can be adjusted using the parameter General.MixXCGGAInOut documented in the
Advanced and obscure tags section of the manual, though we do not recommend changing it.)

Go to top.

Go to top.
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4.2 Structural relaxation: Theory

Structural relaxation involves optimisation of the ionic coordinates, optimisation of the simulation cell, or both, with
respect to the DFT total energy or the enthalpy if the cell is not fixed.

4.2.1 Ionic relaxation

L-BFGS:

To be written. . .

Conjugate gradients

The most naive geometry optimisation algorithm is steepest descent: we calculate the gradient of the DFT total energy
(i.e. the force) and propagate the system in the direction of the steepest gradient (the direction of the force vector) until
the energy stops decreasing. We choose the direction (largest gradient in this case) and perform a line search. This will
be sufficient if the potential energy surface is well-behaved, but in most cases convergence will require many iterations.
Conjugate gradients is a well-established method the improves upon steepest descent in the choice of search direction.
Without going into too much detail, we choose a new search direction that is orthogonal to all previous search directions
using the conjugacy ratio 𝛽. At iteration 𝑛, it is given by,

𝛽𝑛 = 𝛽𝑛−1 +
f𝑇𝑛 f𝑛

f𝑇𝑛−1f𝑛−1

This is the Fletcher-Reeves formulation; note that 𝛽0 = 0. We can then construct the search direction at step 𝑛, 𝐷𝑛,

𝐷𝑛 = 𝛽𝑛𝐷𝑛−1 + f𝑛,

and peform the line minimisation in this direction. This process is repeated until the maximum force component is
below some threshold.

Go to top.

Quenched MD

The system is propagated in the direction of steepest descent as determined by the DFT forces, and the velocity is scaled
down as the system approaches its zero-temperature equilibrium configuration.

Go to top.

FIRE Quenched MD

The system is propagated using the modified equation of motion [Tb1],

v̇(𝑡) = F(𝑡)/𝑚− 𝛾(𝑡)|v(𝑡)|[v̂(𝑡)− F̂(𝑡)]

which has the effect of introducing an acceleration in a direction that is steeper than the current direction of motion. If
the power 𝑃 (𝑡) = F(𝑡) ·v(𝑡) is positive then the system is moving “downhill” on the potential energy surface, and the
stopping criterion is when it becomes negative (moving “uphill”).

Go to top.
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4.2.2 Cell optimisation

When optimising the cell with fixed fractional ionic coordinates, the same conjugate gradients method is used as above,
but minimising the enthalpy with respect to the cell vectors.

Go to top.

4.2.3 Combined optimisation

The ionic and cell degrees of freedom can be relaxed simultaneously by combining all of their coordinates into a single
vector and optimising them with respect to the enthalpy of the system. However, this atomic forces and total stresses
having numerical values of the same order of magnitude, and changes in ionic coordinates and cell vectors being of the
same order of magnitude. Using the method of Pfrommer et al. [Tb2], the latter can be enforced by using fractional
coordinates for the ionic positions, and fractional lattice vectors of the form ℎ = (1 + 𝜖)ℎ0 where h is the matrix of
lattice vectors, ℎ0 is the matrix for some reference configuration and epsilon is the strain matrix. The “fractional” force
on the i th atom is then F𝑖 = 𝑔f𝑖 where f𝑖 is the DFT-calculated force multiplied by the metric tensor 𝑔 = ℎ𝑇ℎ. The
“fractional” stress is,

𝑓 (𝜖) = −(𝜎 + 𝑝Ω)(1 + 𝜖𝑇 )

where 𝜎 is the DFT-calculated stress, 𝑝 is the target pressure and Ω is the volume. The resulting vector is optimised
using the same conjugate gradients algorithm as before, minimising the enthalpy.

Go to top.

4.3 Molecular Dynamics: Theory

4.3.1 Microcanonical (NVE) ensemble

The Hamiltonian for the microcanonical ensemble is,

ℋ =

𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖
+ 𝑈(r𝑖)

where p𝑖 and r𝑖 are the position and momentum of particle 𝑖 and 𝑈 is the DFT total (potential) energy. Hamilton’s
equations can be solved to give the following equations of motion:

ṙ𝑖 =
p𝑖

𝑚𝑖

ṗ𝑖 =
𝜕𝑈(r𝑖)

𝜕r𝑖
= Fi

In order to construct a time-reversible algorithm from these equations, the Liouvillian formulation is employed [Ta1]
(trivially, in this case). The Liouville operator 𝐿 can be defined in terms of position and momentum components:

𝑖𝐿 = ṙ
𝜕

𝜕r
+ ṗ

𝜕

𝜕p
= 𝑖(𝐿𝑟 + 𝐿𝑝).

The Liouvillian can be used to construct the classical propagator, which relates the state 𝑓 of the system at time 0 to its
state at time 𝑡:

𝑓 [p𝑁 (𝑡), r𝑁 (𝑡)] = 𝑒𝑖𝐿𝑡𝑓 [p𝑁 (0), r𝑁 (0)]
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Taking the individual position and momentum parts of the Liouvillian 𝐿𝑟 and 𝐿𝑝, it can be shown that applying it to
the state 𝑓 result in a simple linear shift in coordinates and a simple linear shift in momentum respectively:

𝑖𝐿𝑟𝑓(𝑡) = 𝑓 [p𝑁 (0), r𝑁 (0) + ṙ𝑁 (0)𝑡]

𝑖𝐿𝑝𝑓(𝑡) = 𝑓 [p𝑁 (0) + F𝑁 (0)𝑡, r𝑁 (0)]

However, we cannot simply replace 𝑒𝑖𝐿𝑡 with 𝑒𝑖𝐿𝑟𝑡 because 𝑖𝐿𝑟 and 𝑖𝐿𝑝 are non-commuting operators, so we must
employ the Trotter-Suzuki identity:

𝑒𝐴+𝐵 = lim
𝑃→∞

(︁
𝑒𝐴/2𝑃 𝑒𝐵/𝑃 𝑒𝐴/2𝑃

)︁𝑃
Thus for a small enough time step ∆𝑡 = 𝑡/𝑃 and to first order, a discrete time step corresponds to the application of
the discrete time propagator 𝐺,

𝐺(∆𝑡) = 𝑈1

(︂
∆𝑡

2

)︂
𝑈2 (∆𝑡)𝑈1

(︂
∆𝑡

2

)︂
= 𝑒𝑖𝐿1

Δ𝑡
2 𝑒𝑖𝐿2Δ𝑡𝑒𝑖𝐿1

Δ𝑡
2 ,

which can be shown to be unitary and therefore time-reversible. Applying the operators𝑈 in the sequence determined by
the Trotter decomposition generates the velocity Verlet algorithm, which is used to integrate microcanonical molecular
dynamics in CONQUEST. For a detailed derivation of the algorithm, refer to Frenkel & Smit [Ta1].

Go to top.

4.3.2 Extended Lagrangian Born-Oppenheimer MD (XL-BOMD)

If the electronic density from the previous ionic step is used as an initila guess for the next SCF cycle, a problem arises
because this process breaks the time-reversibility of the dynamics. This is manifested as a gradual drift in the total
energy in the case of a NVE simulation, or the conserved quantity in the case of non-Hamiltonian dynamics. The
solution proposed by Niklasson [Ta2, Ta3] is to introduce auxilliary electronic degrees of freedom into the Lagrangian,
which can be propagated via time-reversible integrators.

The extended Lagrangian used in CONQUEST is [Ta4],

ℒXBO
(︁
X, Ẋ,R, Ṙ

)︁
= ℒBO

(︁
R, Ṙ

)︁
+

1

2
𝜇Tr

[︁
Ẋ2
]︁
− 1

2
𝜇𝜔2Tr

[︀
(LS−X)2

]︀
,

where X is a sparse matrix with the same range as LS, 𝜇 is the fictitious electron mass and 𝜔 is the curvature of the
auxiliary harmonic potential. The Euler-Lagrange equations of motion are then,

𝑚𝑖r̈i = −𝜕𝑈 [R;LS]

𝜕r𝑖
= Fi

Ẍ = 𝜔2(LS−X),

The first of these is simply Newton’s second law, and the velocity update equation of motion in the microcanonical
ensemble. The second can be integrated using a time-reversible algorithm, the velocity Verlet scheme in the case of
CONQUEST [Ta4]:

X(𝑡+ 𝛿𝑡) = 2X(𝑡)−X(𝑡− 𝛿𝑡) + 𝛿𝑡2𝜔2 [L(𝑡)S(𝑡)−X(𝑡)]

+ 𝑎

𝑀∑︁
𝑚=0

𝑐𝑚X(𝑡−𝑚𝛿𝑡)

i.e. the trajectory of X(𝑡) is time-reversible, and evolves in a harmonic potential centred on the ground state density
L(𝑡)S(𝑡). The matrix XS−1 is a good guess for the L matrix in the Order(N) scheme.

Despite the time-reversitibility, the X matrix tends in practice to gradually drift from the harmonic centre over time, in-
creasing the number of SCF iterations required to reach the minimum over the course of the simulation. To remove such
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numerical errors, the final dissipative term is included, and is found to have a minimal effect on the time-reversibility.
We note that since the auxiliary variable 𝑋 is used to generate an intial guess for the SCF process, it does not appear
in the conserved (pseudo-Hamiltonian) quantity for the dynamics.

Go to top.

4.3.3 Non-Hamiltonian dynamics

Extended system method

Hamiltonian dynamics generally describes systems that are isolated from their surroundings, but in the canonical and
isobaric-isothermal ensembles, we need to couple the system to an external heat bath and/or stress. It is possible to
model such systems by positing a set of equations of non-Hamiltonian equations of motion, and proving that they
generate the correct statistical ensemble [Ta5]. This is the extended system approach: we modify the Hamiltonian to
include the thermostat and/or barostat degrees of freedom, derive the (pseudo-) Hamiltonian equations of motion, and
demostrate that the correct phase space distribution for the ensemble is recovered.

Go to top.

Canonical (NVT) ensemble

In the Nose-Hoover formulation [Ta6, Ta7], the Hamiltonian for a system in the canonical ensemble can be written,

ℋ =
∑︁
𝑖

1

2
𝑚𝑖𝑠

2ṙ2𝑖 + 𝑈(r𝑖) +
1

2
𝑄�̇�2 − (𝑛𝑓 + 1)𝑘𝐵𝑇 ln 𝑠,

where r𝑖 and ṙi are respectively the position and velocity of particle 𝑖, 𝑈 is the potential energy, in this case the
DFT total energy, 𝑠 is a dimensionless quantity that can be interpreted post-hoc as a time step scaling factor, 𝑄 is the
fictitious mass of the heat bath and 𝑛𝑓 is the number of ionic degrees of freedom. Hamilton’s equations can be solved
to generate the Nose-Hoover equations of motion. However Martyna et al. demonstrate that this method does not
generate an ergodic trajectory, and proposed an alternative formulation [Ta8] in which the temperature is controlled by
a chain of 𝑀 coupled thermostats of mass 𝑄𝑘, notional position 𝜂𝑘 and conjugate momentum 𝑝𝜂𝑘

:

ṙi =
p𝑖

𝑚𝑖

ṗi = −𝜕𝑈(r)

𝜕r𝑖
− 𝑝𝜂1

𝑄1
p𝑖

�̇�𝑘 =
𝑝𝜂𝑘

𝑄𝑘

�̇�𝜂1
=

(︃
𝑁∑︁
𝑖=1

p𝑖

𝑚𝑖
− 𝑛𝑓𝑘𝐵𝑇

)︃
− 𝑝𝜂2

𝑄𝜂2

𝑝𝜂1

�̇�𝜂𝑘
=

(︃
𝑝2𝜂𝑘−1

𝑄𝑘−1
− 𝑘𝐵𝑇

)︃
−
𝑝𝜂𝑘+1

𝑄𝑘+1
𝑝𝜂𝑘

�̇�𝜂𝑀
=

(︃
𝑝2𝜂𝑀−1

𝑄𝑀−1
− 𝑘𝐵𝑇

)︃

The Liouvillian for these equations of motion can be non-uniquely decomposed into components of ionic position
(𝑖𝐿𝑟) and momentum (𝑖𝐿𝑝) as in the microcanonical case, the extended Lagrangian (𝑖𝐿XL, and a Nose-Hoover chain
component (𝑖𝐿NHC)

𝑖𝐿 = 𝑖𝐿NHC + 𝑖𝐿𝑝 + 𝑖𝐿XL + 𝑖𝐿𝑟,
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which is directly translated into an algorithm with the Trotter-Suzuki expansion,

exp(𝑖𝐿∆𝑡) = exp

(︂
𝑖𝐿NHC

∆𝑡

2

)︂
exp

(︂
𝑖𝐿𝑝

∆𝑡

2

)︂
×

exp

(︂
𝑖𝐿XL

∆𝑡

2

)︂
exp (𝑖𝐿𝑟∆𝑡) exp

(︂
𝑖𝐿XL

∆𝑡

2

)︂
×

exp

(︂
𝑖𝐿𝑝

∆𝑡

2

)︂
exp

(︂
𝑖𝐿NHC

∆𝑡

2

)︂
This is recognisable as the velocity Verlet algorithm with extended Lagrangian integration which can be reduced to a
single step, as described in Extended Lagrangian Born-Oppenheimer MD (XL-BOMD), with a half time step integration
of the Nose-Hoover chain equations of motion before and after. For full details of the integration scheme, see Hirakawa
et al. [Ta9].

Go to top.

Isobaric-Isothermal (NPT) ensemble

The Parinello-Rahman equations of motion [Ta10] extend the fixed cell equations of motion to include the cell degrees
of freedom in the extended system approach. We use the Martyna-Tobias-Tuckerman-Klein modification [Ta11], which
couples the variable cell equations of motion to a Nose-Hoover chain the themrostat the system, recovering the isobaric-
isothermal (NPT) ensemble. For an unconstrained cell (i.e. the lattice vectors can change freely), the equations of
motion are,

ṙ𝑖 =
p𝑖

𝑚𝑖
+

p𝑔

𝑊𝑔
r𝑖

ṗ𝑖 = F𝑖 −
p𝑔

𝑊𝑔
p𝑖 −

(︂
1

𝑁𝑓

)︂
Tr[p𝑔]

𝑊𝑔
p𝑖 −

𝑝𝜉
𝑄
p𝑖

ḣ =
p𝑔h

𝑊𝑔

ṗg = 𝑉 (Pint − I𝑃ext) +

[︃
1

𝑁𝑓

𝑁∑︁
𝑖=1

p2
𝑖

𝑚𝑖

]︃
I− 𝑝𝜉

𝑄
p𝑔

𝜉 =
𝑝𝜉
𝑄

ṗ𝑔 =

𝑁∑︁
𝑖=1

p2
𝑖

𝑚𝑖
+

1

𝑊𝑔
Tr[p𝑇

𝑔 p𝑔]− (𝑁𝑓 + 𝑑2)𝑘𝑇

Here, r𝑖, p𝑖 and 𝑚𝑖 are the position, momentum and mass of particle 𝑖 respectively, 𝜉, 𝑝𝜉 and 𝑄 are the position,
momentum and mass of the thermostat, and h, p𝑔 and𝑊𝑔 are the matrix of lattice vectors, matrix of cell velocities and
cell mass respectively. Note that these equations only include one Nose-Hoover thermostat for simplicity. Conquest uses
the Shinoda-Shiga-Mikami splitting of the Liouvillian [Ta12] to propagate the system. The Liouvillian is decomposed
as,

𝑖𝐿 = 𝑖𝐿𝑟 + 𝑖𝐿ℎ + 𝑖𝐿𝑣 + 𝑖𝐿bath,

which can be further split,

𝑖𝐿bath = 𝑖𝐿box + 𝑖𝐿particles

𝑖𝐿box = 𝑖𝐿vbox + 𝑖𝐿𝜉 + 𝑖𝐿𝑣𝜉1
+ 𝑖𝐿𝑣𝜉𝑘

+ 𝑖𝐿𝑣𝜉𝑀

𝑖𝐿particles = 𝑖𝐿vpart + 𝑖𝐿𝜉 + 𝑖𝐿𝑣𝜉1
+ 𝑖𝐿𝑣𝜉𝑘

+ 𝑖𝐿𝑣𝜉𝑀
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Using Liouville’s theorem, we have,

𝑖𝐿𝑟 =

𝑁∑︁
𝑖=1

[v𝑖 + v𝑔r𝑖] · ∇r𝑖

𝑖𝐿ℎ =
∑︁
𝛼,𝛽

v𝑔,𝛼𝛽h𝛼𝛽
𝜕

𝜕h𝛼𝛽

𝑖𝐿𝑣 =

𝑁∑︁
𝑖=1

(︂
F𝑖

𝑚𝑖

)︂
· ∇v𝑖

𝑖𝐿bath = 𝑖𝐿vpart + 𝑖𝐿vbox + 𝑖𝐿𝜉 + 𝑖𝐿𝑣𝜉1
+ 𝑖𝐿𝑣𝜉𝑘

+ 𝑖𝐿𝑣𝜉𝑀

=

𝑁∑︁
𝑖=1

[︂
−
{︂
v𝑔 +

1

𝑁𝑓
Tr(v𝑔) + 𝑣𝜉1

}︂
v𝑖

]︂
∇v𝑖

+
∑︁
𝛼,𝛽

[︂
𝐹box

𝑊
− 𝑣𝜉1v𝑔,𝛼𝛽

]︂
𝜕

𝜕v𝑔,𝛼𝛽

+

𝑀∑︁
𝑘=1

𝑣𝜉𝑘
𝜕

𝜕𝜉𝑘

+

[︂
𝐹NHC1

𝑄1
− 𝑣𝜉1𝑣𝜉2

]︂
𝜕

𝜕𝑣𝜉1

+

𝑀∑︁
𝑘=2

[︂
1

𝑄𝑘
(𝑄𝑘−1𝑣

2
𝜉𝑘−1

− 𝑘𝑇ext)− 𝑣𝜉𝑘𝑣𝜉𝑘+1

]︂
𝜕

𝜕𝑣𝜉𝑘

+

[︂
1

𝑄𝑀
(𝑄𝑀−1𝑣

2
𝜉𝑀−1

− 𝑘𝑇ext)

]︂
𝜕

𝜕𝑣𝜉𝑀

Here we use 𝑀 heat baths in a Nose-Hoover chain. The Trotter-Suzuki expansion is,

𝑒𝑖𝐿Δ𝑡 = 𝑒𝑖𝐿bath
Δ𝑡
2 𝑒𝑖𝐿𝑣

Δ𝑡
2 𝑒𝑖𝐿ℎ

Δ𝑡
2 𝑒𝑖𝐿𝑟Δ𝑡𝑒𝑖𝐿ℎ

Δ𝑡
2 𝑒𝑖𝐿𝑣

Δ𝑡
2 𝑒𝑖𝐿bath

Δ𝑡
2 .

The Liouvillian for the heat baths can be further expanded:

𝑒𝑖𝐿particles
Δ𝑡
2 = 𝑒

(︁
𝑖𝐿𝑣𝜉1

+𝑖𝐿𝑣𝜉𝑘
+𝑖𝐿𝑣𝜉𝑀

)︁
Δ𝑡
4 𝑒(𝑖𝐿𝜉+𝑖𝐿vpart)

Δ𝑡
2 𝑒

(︁
𝑖𝐿𝜉+𝑖𝐿𝑣𝜉1

+𝑖𝐿𝑣𝜉𝑘
+𝑖𝐿𝑣𝜉𝑀

)︁
Δ𝑡
4

Finally, expanding the first propagator in the previous expression, we have,

𝑒

(︁
𝑖𝐿𝑣𝜉1

+𝑖𝐿𝑣𝜉𝑘
+𝑖𝐿𝑣𝜉𝑀

)︁
Δ𝑡
4 = 𝑒

−𝑖
(︁
−𝑣𝜉1𝑣𝜉2

𝜕
𝜕𝜉1

−
∑︀𝑀

𝑘=2 𝑣𝜉𝑘𝑣𝜉𝑘+1
𝜕

𝜕𝜉𝑘
−𝑣𝜉𝑀−1

𝑣𝜉𝑀
𝜕

𝜕𝜉𝑀

)︁
Δ𝑡
8

× 𝑒
𝑖

(︂
𝐹NHC1

𝜕
𝜕𝑣𝜉1

+𝐹NHC𝑘
𝜕

𝜕𝑣𝜉𝑘
+𝐹NHC𝑀

𝜕
𝜕𝑣𝜉𝑀

)︂
Δ𝑡
4

× 𝑒
−𝑖

(︁
−𝑣𝜉1𝑣𝜉2

𝜕
𝜕𝜉1

−
∑︀𝑀

𝑘=2 𝑣𝜉𝑘𝑣𝜉𝑘+1
𝜕

𝜕𝜉𝑘
−𝑣𝜉𝑀−1

𝑣𝜉𝑀
𝜕

𝜕𝜉𝑀

)︁
Δ𝑡
8

These expressions are directly translated into the integration algorithm.

Go to top.
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Weak coupling thermostat/barostat

Instead of modifying the Hamiltonian, the Berendsen-type weak coupling method [Ta13] involves coupling the ionic
degrees of freedom to a an external temperature and/or pressure bath via “the principle of least local perturbation
consistent with the required global coupling.” Thermostatting is acheived via a Langevin-type equation of motion, in
which the system is globally coupled to a heat bath and subjected to random noise:

𝑚𝑖r̈𝑖 = F𝑖 +𝑚𝑖𝛾

(︂
𝑇0
𝑇

− 1

)︂
ṙ𝑖,

where 𝛾 is a global friction constant chosen to be the same for all particles. This can be acheived in practice by rescaling
the velocities v𝑖 → 𝜆v𝑖, where 𝜆 is,

𝜆 =

[︂
1 +

∆𝑡

𝜏𝑇

(︂
𝑇0
𝑇

− 1

)︂]︂ 1
2

A similar argument can be applied for weak coupling to an external pressure bath. In the isobaric-isoenthalpic ensemble,
the velocity of the particles can be expressed,

ṙ = v − 𝛽(𝑃0 − 𝑃 )

3𝜏𝑃
r,

i.e. the fractional coordinates are scaled by a factor determined by the difference between the internal and external
pressures, the isothermal compressibility 𝛽 and a pressure coupling time constant $tau_P$. In the isotropic case, the
cell scaling factor 𝜇 can be expressed,

𝜇 =

[︂
1− ∆𝑡

𝜏𝑃
(𝑃0 − 𝑃 )

]︂ 1
3

,

where the compressibility is absorbed into the time time constant 𝜏𝑃 . Allowing for fluctuations of all cell degrees of
freedom, the scaling factor becomes,

𝜇 = I− 𝛽∆𝑡

3𝜏𝑃
(P0 −P)

While trivial to implement and in general stable, the weak-coupling method does not recover the correct phase space
distribution for the canonical or isobaric-isothermal ensembles, for which the extended system method is required. It
is no longer supported in CONQUEST, but the concepts are useful.

Go to top.

Stochastic velocity rescaling

Stochastic velocity rescaling (SVR) [Ta14] is a modification of the weak coupling method, in which a correctly con-
structed random force is added to enforce the correct NVT (or NPT) phase space distribution. The kinetic energy is
rescaled such that the change in kinetic energy between thermostatting steps is,

𝑑𝐾 = (�̄� −𝐾)
𝑑𝑡

𝜏
+ 2

√︃
𝐾�̄�

𝑁𝑓

𝑑𝑊√
𝜏

where �̄� is the target kinetic energy (external temperature), 𝑑𝑡 is the time step, 𝜏 is the time scale of the thermostat,
𝑁𝑓 is the number of degrees of freedom and 𝑑𝑊 is a Wiener process. Practically, the particle velocities are rescaled
by a factor of 𝛼, defined via,

𝛼2 = 𝑒−Δ𝑡/𝜏 +
�̄�

𝑁𝑓𝐾

(︁
1− 𝑒−Δ𝑡/𝜏

)︁⎛⎝𝑅2
1 +

𝑁𝑓∑︁
𝑖=2

𝑅2
𝑖

⎞⎠+ 2𝑒−Δ𝑡/2𝜏

√︃
�̄�

𝑁𝑓𝐾

(︀
1− 𝑒−Δ𝑡/𝜏

)︀
𝑅1
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Where 𝑅𝑖 is a set of 𝑁𝑓 normally distributed random numbers with unitary variance. This method can be applied
to thermostat the NPT ensemble by barostatting the system with the Parinello-Rahman method, and using the above
expressions, but with additional 𝑅𝑖’s for the cell degrees of freedom, and thermostatting the cell velocities as well as
the particle velocities [Ta15].

Go to top.
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FIVE

GET IN TOUCH

• If you have suggestions for developing the code, please use GitHub issues. The developers cannot guarantee to
offer support, though we will try to help.

• Report bugs, or suggest features on GitHub issues. View the source code on the main GitHub page.

• You can ask for help and discuss any problems that you may have on the Conquest mailing list (to register for
this list, please send an email to mlsystem@ml.nims.go.jp with the subject “sub conquest-user”, though please
note that, for a little while, some of the system emails may be in Japanese; you will receive a confirmation email
to which you should simply reply without adding any text).
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SIX

LICENCE

CONQUEST is available freely under the open source MIT Licence. We ask that you acknowledge use of the code
by citing appropriate papers, which will be given in the output file (a BiBTeX file containing these references is also
output). The key CONQUEST references are:

• A. Nakata, J. S. Baker, S. Y. Mujahed, J. T. L. Poulton, S. Arapan, J. Lin, Z. Raza, S. Yadav, L. Truflandier, T.
Miyazaki, and D. R. Bowler, J. Chem. Phys. 152, 164112 (2020) DOI:10.1063/5.0005074

• T. Miyazaki, D. R. Bowler, R. Choudhury and M. J. Gillan, J. Chem. Phys. 121, 6186–6194 (2004)
DOI:10.1063/1.1787832

• D. R. Bowler, T. Miyazaki and M. J. Gillan, J. Phys. Condens. Matter 14, 2781–2798 (2002) DOI:10.1088/0953-
8984/14/11/303
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