

    
      
          
            
  
CONQUEST: a local orbital, large-scale DFT code

CONQUEST is a local orbital density functional theory (DFT) code,
capable of massively parallel operation with excellent scaling.  It
uses a local orbital basis
to represent the Kohn-Sham eigenstates or the density matrix.
CONQUEST can be applied to atoms, molecules, liquids and solids, but
is particularly efficient for large systems.  The code can find the ground
state using exact diagonalisation of the Hamiltonian or via a linear
scaling approach.  The code has demonstrated scaling to over 2,000,000
atoms and 200,000 cores when using linear scaling, and over 3,400
atoms and 850 cores with exact diagonalisation.
CONQUEST can perform structural relaxation (including unit cell
optimisation) and molecular dynamics (in NVE, NVT and NPT ensembles
with a variety of thermostats).


Getting Started


	Overview: Why CONQUEST?


	Frequently Asked Questions


	Quick Overview


	Installation


	Example calculations









User Guide


	Input and output


	Finding the ground state


	Converging Parameters


	Basis sets


	Electronic Structure


	Structural relaxation


	Molecular Dynamics


	Post-processing CONQUEST output


	External tools


	Managing Conquest with ASE


	Error codes


	Input tags









Tutorials


	Introductory Tutorials


	Structural Relaxation Tutorials


	Molecular Dynamics Tutorials


	Basis Function Tutorials


	Advanced Tutorials









Theory


	Background on energy, forces and stress


	Structural relaxation: Theory


	Molecular Dynamics: Theory









Get in touch


	If you have suggestions for developing the code, please
use GitHub issues [https://github.com/OrderN/CONQUEST-release/issues].  The developers cannot guarantee to offer
support, though we will try to help.


	Report bugs, or suggest features on GitHub
issues [https://github.com/OrderN/CONQUEST-release/issues].  View the source code on the main GitHub page [https://github.com/OrderN/CONQUEST-release].


	You can ask for help and discuss any problems that you may have on
the Conquest mailing list (to register for this list, please send an
email to mlsystem@ml.nims.go.jp with the subject “sub
conquest-user”, though please note that, for a little while, some of the
system emails may be in Japanese; you will receive a confirmation
email to which you should simply reply without adding any text).






Licence

CONQUEST is available freely under the open source MIT Licence [https://choosealicense.com/licenses/mit/].
We ask that you acknowledge use of the code by citing appropriate
papers, which will be given in the output file (a BiBTeX file
containing these references is also output).  The key CONQUEST
references are:


	A. Nakata, J. S. Baker, S. Y. Mujahed, J. T. L. Poulton, S. Arapan, J. Lin, Z. Raza, S. Yadav, L. Truflandier, T. Miyazaki, and D. R. Bowler, J. Chem. Phys. 152, 164112 (2020)
DOI:10.1063/5.0005074 [https://doi.org/10.1063/5.0005074]


	T. Miyazaki, D. R. Bowler, R. Choudhury and M. J. Gillan, J. Chem. Phys. 121, 6186–6194 (2004)
DOI:10.1063/1.1787832 [http://dx.doi.org/10.1063/1.1787832]


	D. R. Bowler, T. Miyazaki and M. J. Gillan, J. Phys. Condens. Matter 14, 2781–2798 (2002)
DOI:10.1088/0953-8984/14/11/303 [http://dx.doi.org/10.1088/0953-8984/14/11/303]








            

          

      

      

    

  

    
      
          
            
  
Overview: Why CONQUEST?

There are already many DFT codes which are available under open-source
licences.  Here we give reasons why you might choose to use CONQUEST.


Large-scale simulations

CONQUEST is designed to scale to large systems, either using exact
diagonalisation (with the multisite support function approach, we have
demonstrated calculations on over 3,000 atoms) or with linear scaling
(where calculations on over 2,000,000 atoms have been demonstrated).
Moreover, the same code and basis sets can be used to model systems
from 1 atom to more than 1,000,000 atoms.



Efficient parallelisation

CONQUEST is an inherently parallel code, with scaling to more than 800
cores demonstrated for exact diagonalisation, and nearly 200,000 cores
with linear scaling.  This scaling enables efficient use of HPC
facilities.  CONQUEST (in linear scaling mode, as well as to a certain
extent for exact diagonalisation) scales best with weak scaling:
fixing the number of atoms per core (or thread) and choosing a number
of cores based on the number of atoms.

CONQUEST also offers some OpenMP parallelisation in linear scaling
mode, with relatively low numbers of MPI threads per node, and further
parallelisation performed with OpenMP.



Linear scaling DFT

The ideas of linear scaling have been current for more than twenty
years, but it has proven challenging to make efficient, accurate codes
to implement these ideas.  CONQUEST has demonstrated effective linear
scaling (with excellent parallel scaling), though is still somewhat
restricted in the basis sets that can be used.  For calculations
beyond 5,000-10,000 atoms with DFT, linear scaling is the only option.



Basis sets

CONQUEST expresses the Kohn-Sham eigenstates or the density matrix
(which are equivalent) in terms of local orbitals called support
functions.  These support functions are made from one of two basis
sets: pseudo-atomic orbitals (PAOs) or blip functions (B-splines);
the main basis functions in use in CONQUEST are the PAOs.  A PAO
generation code is included with the CONQUEST distribution, with
well-defined and reliable default basis sets for most elements.

The simplest choice is to use one PAO for each support function (typically
this allows calculations up to 1,000 atoms).  For diagonalisation
beyond this system size, a composite basis is used,
where PAOs from several are combined into a smaller set of support functions
(multi-site support functions, or MSSF).  With MSSF, calculations on
3,000+ atoms are possible on HPC platforms.  For linear scaling, more
care is required with basis sets (more details can be found here).





            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


When should I use CONQUEST?

You can use CONQUEST for any DFT simulations that you need to
perform.  It is efficient for small problems, though may not be as
efficient as other codes (e.g. plane wave codes) because it has been
designed for massively parallel operation, which brings some
overhead.  If you need to perform DFT calculations on large systems
(several hundred atoms or beyond) or want to perform highly parallel
calculations, you should definitely consider CONQUEST.

CONQUEST uses Hamann [http://www.mat-simresearch.com] optimised norm-conserving Vanderbilt (ONCV)
pseudopotentials, which can also be used by PWSCF [https://www.quantum-espresso.org]
and Abinit [https://www.abinit.org] which allows direct comparisons between the codes.



When should I use linear scaling?

You should use linear scaling if you need to model systems with more
than about 5,000 atoms, though gains are often found for smaller
systems (from 1,000 atoms upwards).

Linear scaling calculations offer the prospect of scaling to
significantly larger systems than traditional DFT calculations;
however, they make approximations and require some care and
characterisation.  In particular, instead of solving for eigenvalues
and eigenstates, linear scaling methods solve for the density matrix,
so that energy-resolved information (e.g. DOS and band energies) are
not available.  To enable linear scaling, a range is also imposed on the
density matrix and it is important to test the effect of this range.



Will you implement a specific feature for me?

We cannot guarantee to implement specific features, though we are
always happy to take suggestions.  We also welcome new developers: if
there is something that you would like to see in the code, please do
talk to us about joining the development effort.



How do I report a bug?

Please use the GitHub issues [http://github.com/OrderN/CONQUEST-release/issues] page.  Include details of the compiler
and libraries used, the version of CONQUEST, and the input and output
files (if possible).  We will do our best to check the bug and fix it,
but cannot guarantee to help on any timescale.



How do I get help?

The Conquest mailing list (details) is the best place to get
help.  However, the developers cannot guarantee to answer any
questions, though they will try.  Bug reports should be made through
the GitHub issues [http://github.com/OrderN/CONQUEST-release/issues] page.





            

          

      

      

    

  

    
      
          
            
  
Quick Overview


Setting up a calculation

CONQUEST requires three types of file for a calculation:



	A coordinate file


	Ion files (pseudopotentials)


	The input file (Conquest_input)








Coordinates

CONQUEST works with orthorhombic unit cells (i.e. with angles between
lattice vectors at ninety degrees).  The coordinate file is laid out
simply: lattice vectors, number of atoms, atom coordinates (along with
species and movement flags).  Either fractional or Cartesian
coordinates can be read (the default is fractional; Cartesian
coordinates require a flag to be set in the
input file).  CONQUEST also reads and writes PDB format
coordinate files for biomolecular simulations.  More information can
be found in Coordinates.



Ion files

The ion files contain the pseudopotentials and pseudo-atomic orbitals
for the elements, and follow a format similar to the ion files from Siesta
(CONQUEST can read Siesta ion files).  A set of default inputs to
generate ion files is available in the directory pseudo-and-pao.
These contain pseudopotentials based on the PseudoDojo [https://www.pseudo-dojo.org/] library, and
allow ion files to be produced with the basis set generation code that
is included with CONQUEST in the tools/BasisGeneration directory.
Full details are found here.



Conquest_input

The Conquest_input file contains all of the input flags to
control a CONQUEST run.  At a minimum, the file must specify: the run
type (e.g. static or md); the coordinate file name; and the number
of species and the ion file names.  For a well characterised
calculation, further options must be given (for instance setting
details for the calculation of the density matrix).  Simple examples
are given in Example calculations and full documentation of all options can
be found in Input tags.

Go to top




Output from a calculation

The main output from CONQUEST is in a single file, named
Conquest_out by default (this can be changed, and output can be
written to stdout rather than a file).  This file
contains details of the calculation, energies, forces and stresses and
the various electronic structure and atomic movement calculations
performed.  The most important files that are produced during a run are:



	Conquest_out The output file


	Conquest_warnings A list of any warnings issued by the code
(also in Conquest_out)


	coord_next.dat The updated set of atomic positions


	conquest.bib References suggested for the calculation performed


	input.log A log of input options (both set by user and
defaults)







Other files are produced by different run types, and are discussed
elsewhere.





            

          

      

      

    

  

    
      
          
            
  
Installation

You will need to download and compile the code before you can use it;
we do not supply binaries.


Downloading

CONQUEST is accessed from the GitHub repository [https://github.com/OrderN/CONQUEST-release/];
it can be cloned:

git clone https://github.com/OrderN/CONQUEST-release destination-directory

where destination-directory should be set by the user.
Alternatively, it can be downloaded from GitHub as a zip file and
unpacked:

https://github.com/OrderN/CONQUEST-release/archive/master.zip

Go to top



Compiling

Once you have the distribution, you will need to compile the main
Conquest code (found in the src/ directory), along with the ion file
generation code (found in the tools/ directory).  Conquest requires
a working MPI installation including a Fortran90 compiler (often
mpif90 but this can vary), along with a few standard libraries:


	BLAS and LAPACK (normally provided by the system vendor)


	FFTW 3.x (more detail can be found at http://www.fftw.org/)


	ScaLAPACK (often provided as part of an HPC system; the source code
can be obtained from the netlib repository [http://www.netlib.org/scalapack/] if
you need to compile it)




Additionally, Conquest can use LibXC if it is available (v4.x or
later).

The library locations are set in the system.make file in the src/system
directory, along with other parameters needed for compilation.  The default file
name is system.make but you can select another file with make SYSTEM=label
which would then use the file system.label.make in the src/system directory.
system.<systemname>.make
files are provided for some HPC systems used by the community, but if you want to run
locally or on a different system, you will need to create an appropriate system.make
file. Use src/system/system.example.make as a starting point.


	FC (typically FC=mpif90 will be all that is required)


	COMPFLAGS (set these to specify compiler options such as
optimisation)


	BLAS (specify the BLAS and LAPACK libraries)


	SCALAPACK (specify the ScaLAPACK library)


	FFT_LIB (must be left as FFTW)


	XC_LIBRARY (choose XC_LIBRARY=CQ for the internal Conquest
library, otherwise XC_LIBRARY=LibXC_v4 for LibXC v4.x, or XC_LIBRARY=LibXC_v5
for LibXC v5.x and v6.x)


	Two further options need to be set for LibXC:


	XC_LIB (specify the XC libraries)


	XC_COMPFLAGS (specify the location of the LibXC include and
module files, e.g. -I/usr/local/include)








Once these are set, you should make the executable using make.

The ion file generation code is compiled using the same options
required for the main code.

Go to top


Multi-threading

CONQUEST can use OpenMP for multi-threading; some multi-threading is available throughout the code, while there are specific matrix multiplication routines which can use multi-threading for the linear scaling solver.  The number of threads is set via the environment variable OMP_NUM_THREADS.

Compiler flags to enable OpenMP are dependent on the vendor, but should be specified via OMPFLAGS in the system.make file.  If compiling with OpenMP then you should also change the variable OMP_DUMMY in the same file to be blank to enable the number of threads to be included in the output.

On some systems, the default stack size for OpenMP is set to be rather small, and this can cause a segmentation fault when running with multiple threads.  We recommend testing the effect of the environment variable OMP_STACKSIZE (and suggest setting it to 50M or larger as a first test).

Go to top




Installing with Spack

CONQUEST and all of its dependencies can be installed with Spack [https://spack.io/].
The CONQUEST package requires Spack v0.21 or later. If Spack isn’t available or up to date on your
system, it is relatively straightforward to install it with user permissions following the
install instructions [https://spack.readthedocs.io/en/latest/getting_started.html#installation].
When setting up Spack on a new system, it is recommended to configure it to use available
system compilers [https://spack.readthedocs.io/en/latest/getting_started.html#compiler-configuration]
and system packages [https://spack.readthedocs.io/en/latest/getting_started.html#system-packages].
Once spack is installed and set up, install CONQUEST with:

spack install conquest

and load the Conquest executable to PATH with

spack load conquest

The build can be customized by adding options to the
Spack spec [https://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] conquest.
The CONQUEST package includes variants for OpenMP support and different matrix multiplication kernels; more details can be found in the Spack CONQUEST package [https://spack.readthedocs.io/en/latest/package_list.html#conquest].

Go to top





            

          

      

      

    

  

    
      
          
            
  
Example calculations

All example calculations here use diagonalisation and PAO basis sets
(with a simple one-to-one mapping between PAOs and support functions).


Static calculation

We will perform a self-consistent electronic structure calculation on
bulk silicon.  The coordinate file that is needed is:

10.36  0.00  0.00
 0.00 10.36  0.00
 0.00  0.00 10.36
8
  0.000 0.000 0.000  1 T T T
  0.500 0.500 0.000  1 T T T
  0.500 0.000 0.500  1 T T T
  0.000 0.500 0.500  1 T T T
  0.250 0.250 0.250  1 T T T
  0.750 0.750 0.250  1 T T T
  0.250 0.750 0.750  1 T T T
  0.750 0.250 0.750  1 T T T





You should save this in an appropriate file (e.g. coords.dat).
The inputs for the ion file can be found in pseudo-and-pao/PBE/Si
(for the PBE functional).  Changing to that directory and running the
MakeIonFiles utility (in tools) will generate the file
SiCQ.ion, which should be copied to the run directory, and renamed
to Si.ion. The Conquest_input file requires only a few simple
lines at its most basic:

AtomMove.TypeOfRun static
IO.Coordinates coords.dat
Grid.GridCutoff  50
Diag.MPMesh   T
Diag.GammaCentred T
Diag.MPMeshX  2
Diag.MPMeshY  2
Diag.MPMeshZ  2
General.NumberOfSpecies  1
%block ChemicalSpeciesLabel
 1 28.086 Si
%endblock





The parameters above should be relatively self-explanatory; the grid
cutoff (in Hartrees) sets the integration grid spacing, and can be
compared to the charge density grid cutoff in a plane wave code
(typically four times larger than the plane wave cutoff).  The
Monkhorst-Pack k-point mesh (Diag.MPMeshX/Y/Z) is a standard
feature of solid state codes; note that the grid can be forced to be
centred on the Gamma point.

The most important parameters set the number of species and give
details of what the species are (ChemicalSpeciesLabel).  For each
species label (in this case Si) there should be a corresponding
file with the extension .ion (again, in this case Si.ion).
CONQUEST will read the necessary information from this file for
default operation, so no further parameters are required.  This block
also allows the mass of the elements to be set (particularly important
for molecular dynamics runs).

The output file starts with a summary of the calculation requested,
including parameters set, and gives details of papers that are
relevant to the particular calculation.  After brief details of the
self-consistency, the total energy, forces and stresses are printed,
followed by an estimate of the memory and time required.  For this
calculation, these should be close to the following:

Harris-Foulkes Energy            :       -33.792210321858057 Ha

                   Atom   X              Y              Z
                      1  -0.0000000000   0.0000000000   0.0000000000
                      2  -0.0000000000   0.0000000000   0.0000000000
                      3  -0.0000000000   0.0000000000  -0.0000000000
                      4   0.0000000000   0.0000000000   0.0000000000
                      5  -0.0000000000   0.0000000000  -0.0000000000
                      6   0.0000000000   0.0000000000   0.0000000000
                      7  -0.0000000000   0.0000000000   0.0000000000
                      8  -0.0000000000  -0.0000000000   0.0000000000
 Maximum force :      0.00000000(Ha/a0) on atom, component         2        3

                                 X              Y              Z
 Total stress:         -0.01848219    -0.01848219    -0.01848219 Ha

 Total pressure:        0.48902573     0.48902573     0.48902573 GPa





The output file ends with an estimate of the total memory and time
used.

You might like to experiment with the grid cutoff to see how the
energy converges (note that the
number of grid points is proportional to the square root of the energy,
while the spacing is proportional to one over this, and
that the computational effort will scale with the cube of the number
of grid points); as with all DFT
calculations, you should ensure that you test the convergence with
respect to all parameters.

Go to top.



Relaxation


Atomic Positions

We will explore structural optimisation of the methane molecule (a
very simple example).  The coordinates required are:

20.000   0.000   0.000
 0.000  20.000   0.000
 0.000   0.000  20.000
5
0.500 0.500 0.500 1  F F F
0.386 0.500 0.500 2  T F F
0.539 0.607 0.500 2  T T F
0.537 0.446 0.593 2  T T T
0.537 0.446 0.407 2  T T T





The size of the simulation cell should, of course, be tested carefully
to ensure that there are no interactions between images.  We have
fixed the central (carbon) atom, and restricted other atoms to prevent
rotations or translations during optimisation.

The Conquest_input file changes only a little from before, as
there is no need to specify a reciprocal space mesh (it defaults to
gamma point only, which is appropriate for an isolated molecule).  We
have set the force tolerance (AtomMove.MaxForceTol) to a
reasonable level (approximately 0.026 eV/A).  Note that the ion files
can be generated in the same way as before, and
that we assume that the ion files are renamed to C.ion and H.ion.

IO.Coordinates CH4.in
Grid.GridCutoff 50

AtomMove.TypeOfRun lbfgs
AtomMove.MaxForceTol 0.0005

General.NumberOfSpecies  2
%block ChemicalSpeciesLabel
1 12.00 C
2 1.00 H
%endblock





The progress of the optimisation can be followed by searching for the
string Geom (using grep or something similar).  In this case,
we find:

GeomOpt - Iter:    0 MaxF:   0.04828504 E:  -0.83676760E+01 dE:   0.00000000
GeomOpt - Iter:    1 MaxF:   0.03755566 E:  -0.83755762E+01 dE:   0.00790024
GeomOpt - Iter:    2 MaxF:   0.02691764 E:  -0.83804002E+01 dE:   0.00482404
GeomOpt - Iter:    3 MaxF:   0.00613271 E:  -0.83860469E+01 dE:   0.00564664
GeomOpt - Iter:    4 MaxF:   0.00126136 E:  -0.83862165E+01 dE:   0.00016958
GeomOpt - Iter:    5 MaxF:   0.00091560 E:  -0.83862228E+01 dE:   0.00000629
GeomOpt - Iter:    6 MaxF:   0.00081523 E:  -0.83862243E+01 dE:   0.00000154
GeomOpt - Iter:    7 MaxF:   0.00073403 E:  -0.83862303E+01 dE:   0.00000603
GeomOpt - Iter:    8 MaxF:   0.00084949 E:  -0.83862335E+01 dE:   0.00000316
GeomOpt - Iter:    9 MaxF:   0.00053666 E:  -0.83862353E+01 dE:   0.00000177
GeomOpt - Iter:   10 MaxF:   0.00033802 E:  -0.83862359E+01 dE:   0.00000177





The maximum force reduces smoothly, and the structure converges well.
By adjusting the output level (using IO.Iprint for overall output,
or IO.Iprint_MD for atomic movement) more information about the
structural relaxation can be produced (for instance, the force
residual and some details of the line minimisation will be printed for
IO.Iprint_MD 2).

Go to top.



Cell Parameters

We will optimise the lattice constant of the bulk silicon cell that we
studied for the static calculation.  Here we need to change the type
of run, and add one more line:

AtomMove.TypeOfRun cg
AtomMove.OptCell T





Adjust the simulation cell size to 10.26 Bohr radii in all three
directions (to make it a little more challenging).  If you run this
calculation, you should find a final lattice constant
of 10.372 after 3 iterations.  The progress of the optimization can be
followed in the same way as for structural relaxation, and gives:

GeomOpt - Iter:    0 MaxStr:   0.00011072 H:  -0.33790200E+02 dH:   0.00000000
GeomOpt - Iter:    1 MaxStr:   0.00000195 H:  -0.33792244E+02 dH:   0.00204424
GeomOpt - Iter:    2 MaxStr:   0.00000035 H:  -0.33792244E+02 dH:  -0.00000017





Go to top.




Simple Molecular Dynamics

We will perform NVE molecular dynamics for methane, CH4, as a simple
example of how to do this kind of calculation.  You should use the
same coordinate file and ion files as you did for the structural
relaxation, but change the atomic movement flags in the coordinate
file to allow all atoms to move (the centre of mass is fixed during MD
by default).  Your coordinate file should look like this:

20.00000000000000     0.00000000000000     0.00000000000000
 0.00000000000000    20.00000000000000     0.00000000000000
 0.00000000000000     0.00000000000000    20.00000000000000
5
0.500 0.500 0.500 1  T T T
0.386 0.500 0.500 2  T T T
0.539 0.607 0.500 2  T T T
0.537 0.446 0.593 2  T T T
0.537 0.446 0.407 2  T T T





The input file should be:

IO.Coordinates CH4.in

AtomMove.TypeOfRun md
AtomMove.IonTemperature 300
AtomMove.NumSteps 100

General.NumberOfSpecies  2
%block ChemicalSpeciesLabel
1 12.00 C
2 1.00 H
%endblock





where the default timestep (0.5fs) is necessary for simulations
involving light atoms like hydrogen.  The file md.stats contains
details of the simulation, while the trajectory is output to
trajectory.xsf which can be read by VMD among other programs.  In
this simulation, the conserved quantity is the total energy (the sum
of ionic kinetic energy and potential energy of the system) which is
maintained to better than 0.1mHa in this instance.  More importantly,
the variation in this quantity is much smaller than the variation in
the potential energy.  This can be seen in the plot below.

[image: _images/MDPlot.png]
Go to top.



Tutorials

We recommend that you work through, in order, the tutorials included
in the distribution in the tutorials/ directory
to become familiar with the modes of operation of the code.

NOTE In the initial pre-release of CONQUEST (January 2020) we have
not included the tutorials; they will be added over the coming months.

Go to top.



Where next?

While the tutorials have covered the basic operations of Conquest,
there are many more subtle questions and issues, which are given in
the User Guide.

Go to top.





            

          

      

      

    

  

    
      
          
            
  
Input and output


Input files


Conquest_input

All necessary input parameters should be specified in the Conquest_input file,
including the names of the coordinate file and the ion files.  This
file controls the run; there are many sensible default values for
input parameters, but you should ensure that you understand what
they mean.  After a run, the full set of relevant input parameters
(whether specified by the user, or default, are available in the file input.log).

The most common input tags are listed briefly here.
Full documentation can be found in Input tags.


	AtomMove.TypeOfRun takes static, md, sqnm, cg


	IO.Coordinates File name


	IO.Iprint 0-3 (controls amount of output)* DM.SolutionMethod diagon


	Diag.MPMesh   T/F


	Diag.MPMeshX (and Y and Z) N


	Diag.GammaCentred T/F






	Grid.GridCutoff Energy in Ha (sets a grid spacing \(\delta x = \pi/\sqrt{2E}\) for cutoff E in Ha)


	AtomMove.NumSteps N


	AtomMove.MaxForceTol in Ha/bohr


	AtomMove.OptCell T/F (optimises simulation cell size)


	General.NumberOfSpecies N


	%block ChemicalSpeciesLabel Block specifying element number, mass and
ion file name


	IO.FractionalAtomicCoords T/F


	Spin.SpinPolarised T/F


	Spin.FixSpin T/F


	Spin.Magn Difference between spin channel occupations






	minE.SCTolerance Fractional tolerance on magnitude of residual divided by number of electrons


	SC.KerkerPreCondition T/F (for Kerker preconditioning of SCF)


	SC.MaxIters N (maximum number of SCF iterations)




Go to top



Ion files

The ion files contain data on the different species being modelled:
valence charge, pseudopotentials, pseudo-atomic orbitals (PAOs) etc.  Full
details on how the PAOs are used as basis functions for CONQUEST can
be found in the manual section on basis sets.  A
utility for generating these files is provided with CONQUEST, but Siesta ion
files can also be read.  The CONQUEST utility uses the
pseudopotentials generated by the ONCVPSP [http://http://www.mat-simresearch.com] code (though note that to
generate new files for CONQUEST, you will need a small patch).

A set of input files for all elements in the PseudoDojo [https://www.pseudo-dojo.org/] library for
the LDA, PBE and PBEsol exchange-correlation functionals is provided in the
directory pseudo-and-pao.  This will allow you to generate ion
files for these elements easily.

The utility for generating ion files is called MakeIonFiles, and its
source code is found in the tools/BasisGeneration directory.  It
uses the same system.make file as CONQUEST, and following
compilation the executable will be moved to the bin directory.
The input file is Conquest_ion_input, and the key parameters to be set for the
ion file generation are:


	General.NumberOfSpecies to specify number of species


	%block SpeciesLabels to specify what the species are


	In the species block (set with %block XX for species XX):


	Atom.PseudopotentialFile to specify the input file for the ONCVPSP code


	Atom.VKBFile to specify the file that CONQUEST needs to read
(included in the library of inputs, and generally named XX.pot for species XX)


	Atom.BasisSize to specify the size of the basis; at present
this can take the values: minimal; small; medium; and
large.








These are all included in the default input files.
Further fine-grained control can be applied to the basis functions;
this will be documented after the pre-release of CONQUEST.

Go to top



Coordinates

The coordinates are specified in a separate file with relatively
simple format.  The coordinates can be specified in fractional form
(default) or cartesian (set the input tag IO.FractionalAtomicCoords T).
Distance units can be Bohr radii (default) or Angstroms (set the input tag
General.DistanceUnits to Ang).  At present,
CONQUEST only handles orthorhombic unit cells.

The coordinate file is formatted as follows:

a   0.0 0.0
0.0 b   0.0
0.0 0.0 c
NAtoms
x y z species MoveX MoveY MoveZ
.
.
.





Note that the flags MoveX etc take values T/F and indicate whether
atoms are free to move in x, y and z, respectively.  The flag
species is an integer, and selects based on species defined in the
atomic specification section of the
Conquest_input file.
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Output files


Main output

By default, CONQUEST writes output to the Conquest_out file
(though the filename can be set with the parameter IO.OutputFile,
and the flag IO.WriteOutToFile (T/F) selects output to file or
stdout).  This file contains all details of the calculation,
including energies, forces and information on the different stages of
the calculation.  The output verbosity is controlled by the
IO.Iprint family of parameters, which allows different levels of
output detail to be set for different areas of the code.  For
production runs, we expect IO.Iprint 0 to give sufficient detail;
IO.Iprint 3 provides a level of detail that would normally only be
needed for debugging.

Warnings from the calculation (including indications that the
convergence should be improved, and technical issues) are written to the
Conquest_warnings file, which should be checked after each run.  The
warnings are also written to the output file at certain IO.Iprint
levels.
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Electronic structure

Different electronic structure outputs are available; in each case,
the key output flag is given.  Further output flags are described in Input tags.



	Charge density


	Band-resolved charge density (IO.outputWF)


	Density of states (IO.writeDOS)


	Atom-projected density of states (IO.write_proj_DOS)


	Atomic charges, using the Mulliken approach (IO.AtomChargeOutput)







The Kohn-Sham eigenvalues are output in the eigenvalues.dat file.
The charge densities need post-processing to convert from the
standard output format to a file compatible with visualisation
(current supported formats include Gaussian CUBE file and OpenDX
files).

Note that Becke charges can be calculated if the following parameters
are set:

SC.BeckeWeights T
SC.BeckeAtomicRadii T
IO.Iprint_SC 3





This method of output will be refined soon.
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Atomic structure

During structural relaxation and molecular dynamics, the atomic
structure at the end of each step is saved in the output file
coord_next.dat.  This is in the same format as the input.
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Molecular dynamics

A molecular dynamics run will generate a number of additional plain text output
files:



	md.stats — summarises thermodynamic quantities at each steps


	md.frames — contains the complete physical state of the system (lattice
parameters, atomic positions, velocities, forces, stress).


	md.checkpoint — data required for MD restart, namely atomic velocities
and extended system variables.


	md.positions — Atomic coordinates saved at the moment of checkpointing


	trajectory.xsf — atomic coordinates save in .xsf format, which can be
visualised using (for example) VMD, if AtomMove.WriteXSF is true..







Full details are available in Molecular Dynamics.
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Finding the ground state

Finding the electronic ground state is the heart of any DFT code.  In
CONQUEST, we need to
consider several linked stages: the density
matrix (found using diagonalisation or linear scaling);
self-consistency between charge and potential; and the
support functions (though these are not always optimised).

The basis functions in CONQUEST are support functions (localised
functions centred on the atoms), written as
\(\phi_{i\alpha}(\textbf{r})\) where \(i\) indexes an atom and
\(\alpha\) a support function on the atom.  The support functions
are used as basis functions for the density matrix and the Kohn-Sham
eigenstates:


\[\begin{split}\psi_{n\mathbf{k}}(\mathbf{r}) = \sum_{i\alpha} c^{n\mathbf{k}}_{i\alpha}
\phi_{i\alpha}(\mathbf{r})\\
\rho(\mathbf{r}, \mathbf{r}^\prime) = \sum_{i\alpha j\beta}
\phi_{i\alpha}(\mathbf{r}) K_{i\alpha, j\beta} \phi_{j\beta}(\mathbf{r}^\prime)\end{split}\]

where \(n\) is an eigenstate index and \(\mathbf{k}\) is a
point in the Brillouin zone (see here for more on
this).  The total energy can be written in terms of the density
matrix, as:


\[E_{KS} = \mathrm{Tr}[HK] + \Delta E_{Har} + \Delta E_{XC}\]

for the Hamiltonian matrix \(H\) in the basis of support
functions, with the last two terms the standard Harris-Foulkes
[G1, G2] correction terms.

For diagonalisation, the density matrix is made from the coefficients
of the Kohn-Sham eigenstates, \(c^{n\mathbf{k}}_{i\alpha}\), while
for linear scaling it is found directly during the variational
optimisation of the energy.

The question of whether to find the density matrix via diagonalisation
or linear scaling is a complex one, depending on the system size,
the accuracy required and the computational resources available.  The
simplest approach is to test diagonalisation before linear scaling.


Diagonalisation

Exact diagonalisation in CONQUEST uses the ScaLAPACK library which
scales reasonably well in parallel, but becomes less efficient with
large numbers of processes.  The computational time
will scale as \(N^3\) with the number of atoms \(N\), but will
probably be more efficient than linear scaling for systems up to a few
thousand atoms.   (Going beyond a thousand atoms with diagonalisation
is likely to require the multi-site support function technique.)

To choose diagonalisation, the following flag should be set:


DM.SolutionMethod diagon








It is also essential to test relevant parameters, as described below:
the k-point grid in reciprocal space (to sample the Brillouin zone
efficiently); the occupation smearing approach; and the
parallelisation of k-points.
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Brillouin zone sampling

We need to specify a set of discrete points in reciprocal space to
approximate integrals over the Brillouin zone.  The simplest approach
is to use the Monkhorst-Pack approach [G3],
where a grid of points is specified in all directions:


Diag.MPMesh T
Diag.MPMeshX 2
Diag.MPMeshY 2
Diag.MPMeshZ 2








This grid can be forced to be centred on the gamma point (often an
important point) using the parameter Diag.GammaCentred T.
The origin of the Monkhorst-Pack grid may also be offset by an
arbitrary vector from the origin of the Brillouin zone, by specifying:


Diag.MPShiftX 0.0
Diag.MPShiftY 0.0
Diag.MPShiftZ 0.0








Alternatively, the points in reciprocal space can be specified
explicitly by giving a number of points and their locations and weights:


Diag.NumKpts 1

%block Diag.Kpoints
0.00 0.00 0.00 1.00
%endblock Diag.Kpoints








where there must be as many lines in the block as there are k-points.
It is important to note that CONQUEST does not consider space group
symmetry when integrating over the Brillouin zone.
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K-point parallelization

It is possible to parallelise over k-points: to split the processes
into sub-groups, each of which is responsible for a sub-set of the
k-points.  This can be very efficient, and is specified by the
parameter Diag.KProcGroups N, where it is important that the number
of processes is an integer multiple of the number of groups N.  It
will be most efficient when the number of k-points is an integer
multiple of the number of groups.

Go to top.



Electronic occupation smearing

The occupation numbers of the eigenstates are slightly smeared near
the Fermi level, following common practice.  The default smearing type
is Fermi-Dirac smearing with a temperature (in Hartrees) set with the
flag Diag.kT which defaults to 0.001Ha.

The Methfessel-Paxton approach [G4] to occupations allows much higher
smearing temperatures with minimal effect on the free energy (and
hence accuracy) of the energy. This generally gives a similar accuracy
with fewer k-points, and is selected as:


Diag.SmearingType 1
Diag.MPOrder 0








where Diag.MPOrder specifies the order of the Methfessel-Paxton
expansion.  It is recommended to start with the lowest order and
increase gradually, testing the effects.
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Padding Hamiltonian matrix by setting block size

With the default setting, the size of Hamiltonian and overlap matrices
is determined by the total number of support functions.
It can be a prime number and timing of diagonalisation can be very slow
in such cases, since the division of the matrix into small pieces is difficult.

By padding, we can change the size of Hamiltonian matrix to improve
the efficiency of the diagonalisation. To set an appropriate value
for the block size of the matrix, specify the following two variables.


Diag.BlockSizeR       20
Diag.BlockSizeC       20








Note that these two numbers should be the same when padding
(and when using ELPA which will be introduced to CONQUEST soon).
We suggest that an appropriate value is between 20 and 200, but
this should be tested.

The option for padding was introduced after v1.2, and if you would
like to remove it, set the following variable.


Diag.PaddingHmatrix              F
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Linear Scaling

A linear scaling calculation is selected by setting
DM.SolutionMethod ordern.  There are two essential parameters that must be
set: the range of the density matrix, and the tolerance on the
optimisation.


DM.L_range 16.0
minE.Ltolerance 1.0e-6








The tolerance is applied to the residual (the RMS value of the
gradient of the energy with respect to the density matrix).  The
maximum number of iterations in the density matrix optimisation can
be set with DM.LVariations (default 50).

At present, CONQUEST can only operate efficiently in linear scaling
mode with a restricted number of support functions (though this is an
area of active development).  PAO basis sets of SZ and SZP size
(minimal and small in the ion file generator) will run without
restrictions.  For larger PAO basis sets, the OSSF
approach must be used, and is effective.  With a blip basis there are
no restrictions, though efficient optimisation is still under active
development.

It is
almost always more efficient to update the charge density while
optimising the density matrix, avoiding the need for a separate
self-consistency loop.  This is set by choosing
minE.MixedLSelfConsistent T.

An essential part of a linear scaling calculation is finding the
approximate, sparse inverse of the overlap matrix.  Normally this will
happen automatically, but it may require some tests.  The key
parameters are the range for the inverse (see the
Atomic Specification block, and specifically the
Atomic Specification block) and the tolerance applied
to the inversion.


Atom.InvSRange R
DM.InvSTolerance R








A tolerance of up to 0.2 can give convergence without significantly
affecting the accuracy.  The range should be similar to the radius of
the support functions, though increasing it by one or two bohr can
improve the inversion in most cases.

The input tags are mainly found in the Density Matrix section of the
Input tags page.

Go to top.



Self-consistency

The normal mode of operation for CONQUEST involves an iterative search
for self-consistency between the potential and the charge density.
However, it is also possible to run in a non-self-consistent manner,
either with a converged charge density for electronic structure
analysis, or for dynamics, which will be considerably more efficient
than a self-consistent calculation, but less accurate.

Self consistency is set via the following parameters:


minE.SelfConsistent T
minE.SCTolerance    1E-7
SC.MaxIters         50








The tolerance is applied to the RMS value of the residual,
\(R(\mathbf{r}) = \rho^{out}(\mathbf{r}) - \rho^{in}(\mathbf{r})\),
integrated over all space:


\[R_{RMS} = \sqrt{\Omega \sum_l \left(R(\mathbf{r}_l)\right)^2 }\]

where \(\mathbf{r}_l\) is a grid point and  \(\Omega\) is the
grid point volume (integrals are performed
on a grid explained in Integration Grid).  The maximum number
of self-consistency cycles is set with SC.MaxIters, defaulting
to 50.

For non-self-consistent calculations, the main flag should be set as
minE.SelfConsistent F.  The charge density at each step will
either be read from a file (if the flag General.LoadRho T is set),
or constructed from a superposition of
atomic densities.  The Harris-Foulkes functional will be used to
find the energy.
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Restarting SCF

The SCF cycle can be restarted from a previous density matrix or
charge density, which may significantly speed up convergence.
The density matrix is automatically written out in the files Kmatrix2.* or
Lmatrix2.* (depending on whether diagonalisation or linear scaling
is being used).  These files are read in, and the initial
charge density made from them by setting the flags:


General.LoadDM T
SC.MakeInitialChargeFromK T








The charge density is not written out by default; this can be changed by
setting IO.DumpChargeDensity T which results in the files chden.nnn
being created.  To read these in as the initial charge density, the flag
General.LoadRho T should be set.

Go to top.



Advanced options

Instabilities during self-consistency are a well-known issue in
electronic structure calculations.  CONQUEST performs charge mixing
using the Pulay approach, where the new charge density is prepared by
combining the charge densities from a number of previous iterations.
In general, we write:


\[\rho_{n+1}^{in} = \sum_{i} \alpha_i \left[ \rho_{i}^{in} + A R_{i}
\right]\]

where \(R_{i}\) is the residual at iteration \(i\), defined above.  The
fraction of the output charge density that is included is governed by
the variable \(A\), which is set by the parameter
SC.LinearMixingFactor (default 0.5).  If there is instability
during the self consistency, reducing \(A\) can help (though will likely
make convergence a little slower).

It is also advisable to apply Kerker preconditioning to the residual
when the system is large in any dimension.  This removes long
wavelength components of the residual, reducing charge sloshing.  This
is controlled with the following parameters:


SC.KerkerPreCondition T
SC.KerkerFactor       0.1








where the Kerker factor gives the wavevector at which preconditioning
starts to reduce.  The Kerker preconditioning is applied to the
Fourier transform of the residual, \(\tilde{R}\) as:


\[\tilde{R} \frac{q^2}{q^2 + q^2_0}\]

where \(q^2_0\) is the square of the Kerker factor and \(q\) is a
wavevector.  You should test values of \(q_0\) around
\(\pi/a\) where \(a\) is the longest dimension of the simulation
cell (or some important length scale in your system).
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Support functions

Support functions in CONQUEST represent the density matrix, and can be
simple (pseudo-atomic orbitals, or PAOs) or compound, made from simple
functions (either PAOs or blips).  If they are compound, made from other
functions, then the search for the ground state involves the
construction of this representation.  Full details of how the support
functions are built and represented can be found in the manual section on
basis sets.
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Charged systems

CONQUEST uses periodic boundary conditions, which require overall
charge neutrality.  However, charged systems can be modelled:
if an excess of electrons is specified by the user, a uniform
positive background charge is added automatically to restore overall
neutrality.  At present, there are no correction schemes implemented,
so it is important to test the convergence of the energy with unit
cell size and shape.  Electrons are added by setting the parameter
General.NetCharge.

General.NetCharge 1.0





This gives the number of extra electrons to be added to the unit cell,
beyond the valence electrons.
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Spin polarisation

CONQUEST performs collinear spin calculations only.  A spin-polarised
calculation is performed by setting the parameter
Spin.SpinPolarised to T.

Users need to specify either the total initial number of spin-up and spin-down electrons in
the simulation cell (using the parameters Spin.NeUP and
Spin.NeDN), or the difference between the number of spin-up and
spin-down electrons (using the parameter Spin.Magn).

The number of electrons for each spin channel can be fixed during SCF
calculations by setting the parameter Spin.FixSpin to T (default is F).

It is possible to specify the spin occupation in the atomic charge
densities (i.e. the number of spin-up and spin-down electrons used to
build the density).  This is done in the Atomic Specification
part of the Conquest_input file.  Within the atom block for
each species, the numbers of electrons should be set with
Atom.SpinNeUp and Atom.SpinNeDn.  Note that these numbers
must sum to the number of valence electrons for the atom.
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Examples: FM and AFM iron

A two atom ferromagnetic iron simulation might be set up using the
parameters below.  Note that the net spin here is S=1 \(\mu_B\)
(i.e. two more electrons in the up channel than in the down), and
that the net spin is not constrained.

# example of ferro bcc Fe
Spin.SpinPolarised T
Spin.FixSpin  F
Spin.NeUP  9.0     # initial numbers of up- and down-spin electrons,
Spin.NeDN  7.0     # which will be optimised by a SCF calculation when Spin.FixSpin=F

%block ChemicalSpeciesLabel
1   55.845   Fe
%endblock ChemicalSpeciesLabel





An equivalent anti-ferromagnetic calculation could be set up as
follows (though note that the initial specification of spin for the
atoms does not guarantee convergence to an AFM ground state).  By
defining two species we can create spin-up and spin-down atoms (note
that both species will require their own, appropriately labelled, ion
file).

# example of anti-ferro bcc Fe
Spin.SpinPolarised T
Spin.FixSpin  F
Spin.NeUP  8.0     # initial numbers of up- and down-spin electrons in an unit cell
Spin.NeDN  8.0     # are set to be the same

%block ChemicalSpeciesLabel
1   55.845   Fe1
2   55.845   Fe2
%endblock ChemicalSpeciesLabel

%block Fe1           # up-spin Fe
Atom.SpinNeUp 5.00
Atom.SpinNeDn 3.00
%endblock Fe1
%block Fe2           # down-spin Fe
Atom.SpinNeUp 3.00
Atom.SpinNeDn 5.00
%endblock Fe2





When using multi-site or on-site support functions in spin-polarised
calculations, the support functions can be made spin-dependent
(different coefficients for each spin channel) or not by setting
Basis.SpinDependentSF (T/F, default is T).
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Converging Parameters

There are various important parameters in CONQUEST that affect the
convergence of the total energy, and need to be tested.  Integrals are
calculated on a grid; the density matrix is found approximately; a
self-consistent charge density is calculated; and support functions
are, in some modes of operations, optimised.  These parameters are
described here.


Integration Grid

While many integrals are calculated analytically or on fine grids that
move with the atoms, there are still some integrals that must be found
numerically, and CONQUEST uses an orthorhombic, uniform grid to
evaluate these integrals (this grid is also used for the Fourier
transforms involved in finding the Hartree potential).  The
spacing of the grid will affect the accuracy of the calculation, and
it is important to test the convergence of the total energy with the
grid spacing.

The grid spacing can be set intuitively using an energy (which
corresponds to the kinetic energy of the shortest wavelength wave that
can be represented on the grid).  In atomic units, \(E = k^2/2\)
with \(k = \pi/\delta\) for grid spacing \(\delta\).  The
cutoff is set with the parameter:


Grid.GridCutoff E








where E is an energy in Hartrees.  The grid spacing can also be
set manually, by specifying the number of grid points in each
direction:


Grid.PointsAlongX N
Grid.PointsAlongY N
Grid.PointsAlongZ N








If setting the grid in this manner, it is important to understand a
little more about the internal workings of CONQUEST.  The grid is divided up into
blocks (the default size is 4 by 4 by 4), and the number of grid
points in any direction must correspond to an integer multiple of the
block size in that direction.  The block size can be set by the user:


Grid.InBlockX N
Grid.InBlockY N
Grid.InBlockZ N








Note that the blocks play a role in parallelisation and memory use, so
that large blocks may require larger memory per process; we recommend
block sizes no larger than 8 grid points in each direction.
There is also, at present, a restriction on the total number of grid
points in anuy direction, that it must have prime factors of only 2, 3 and 5.  This will be
removed in a future release.
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Finding the density matrix

As discussed in the section on finding the ground
state,
the density matrix is found either
with exact diagonaliation, or the linear scaling approach.  These
two methods require different convergence tests, and are described separately.


Diagonalisation: Brillouin Zone Sampling

The sampling of the Brillouin zone must be tested for convergence, and
the parameters are described here.  The
convergence of charge density will be faster than detailed electronic
structure such as density of states (DOS), and it will be more
accurate for these types of calculations to generate a converged charge
density, and then run non self-consistently (see the section on
self consistency) with appropriate k-point sampling.
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Linear Scaling

The range applied to the density matrix (DM.L_range) determines
the accuracy of the calculation, as well as the computational time
required (as the number of non-zero elements will increase based on a
sphere with the radius of the range, the time will increase roughly
proportional to the cube of the range).  In almost all circumstances,
it is best to operate with a range which converges energy
differences and forces, rather than the absolute energy.  Testing
for this convergence is an essential part of the preparation for
production calculations.

The tolerance applied to the density matrix optimisation
(minE.Ltolerance) must be
chosen to give adequate convergence of the energy and forces.  The
tolerance is applied to the residual in the calculation, defined as:


\[R = \sqrt{\sum_{i\alpha j\beta} \partial E/\partial L_{i\alpha j\beta}
\cdot \partial E/\partial L_{i\alpha j\beta} }\]

The dot product uses the inverse of the overlap matrix as the metric.

The approximate, sparse inversion of the overlap matrix is performed
before the optimisation of the density matrix.  The method used,
Hotelling’s method (a version of a Newton-Raphson approach) is
iterative and terminates when the characteristic quantity
\(\Omega\) increases.  On termination, if \(\Omega\) is below
the tolerance DM.InvSTolerance then the inverse is accepted;
otherwise it is set to the identity (the density matrix optimisation
will proceed in this case, but is likely to be inefficient).  We
define:


\[\Omega = (Tr[I - TS])^2\]

where \(T\) is the approximate inverse.  The range for the inverse
must be chosen (Atom.InvSRange in the species block); by default
it is same as the support function range
(which is then doubled to give the matrix range) but can be
increased.  The behaviour of the inversion with range is not simple,
and must be carefully characterised if necessary.
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Self-consistency

The standard self-consistency approach uses the Pulay RMM method, and
should be robust in most cases.  It can be monitored via the residual,
which is currently defined as the standard RMS difference in charge
density:


\[R = \sqrt{\int \mathrm{d}\mathbf{r}\mid \rho^{out}(\mathbf{r}) -
\rho^{in}(\mathbf{r})\mid^2}\]

where \(\rho^{in}\) is the input charge density for an iteration,
and  \(\rho^{out}\)  is the resulting output charge density.  The
SCF cycle is terminated when this residual is less than the parameter
minE.SCTolerance.  The maximum number of iterations is set with
SC.MaxIters (defaults to 50).

There are various further approaches and parameters which can be used
if the SCF cycle is proving hard to converge.  As is standard, the
input for a given iteration is made by combining the charge density
from a certain number of previous steps (SC.MaxPulay, default 5).
The balance between input and output charge densities from these
previous steps is set with SC.LinearMixingFactor (default 0.5;
N.B. for spin polarised calculations,
SC.LinearMixingFactor_SpinDown can be set separately).  Reducing
this quantity may well improve stability, but slow down the rate of
convergence.

Kerker-style preconditioning (damping long wavelength charge
variations) can be selected using SC.KerkerPreCondition T (this is
most useful in metallic and small gap systems).  The preconditioning
is a weighting applied in reciprocal space:


\[K = \frac{1}{1+q^2_0/q^2}\]

where \(q_0\) is set with SC.KerkerFactor (default 0.1).
This is often very helpful with slow convergence or instability.

Go to top.



Support Functions

The parameters relevant to support functions depend on the basis set
that is used.  In the case of pseudo-atomic orbitals (PAOs), when
support functions are primitive PAOs, the only relevant parameter is
the basis set size, which is set when the ion files are generated.  It
is important to test the accuracy of a given basis set carefully for
the problem that is to be modelled.

When using multi-site support functions (MSSF), the key parameter is
the radius of the MSSF (Atom.MultisiteRange in
the atomic specification block).
As this is increased, the accuracy of the
calculation will also increase, but with increased computational
effort.  Full details of the MSSF (and related OSSF) approach are
given in the section on multi-site support functions.

For the blip basis functions, the spacing of the grid where the blips
are defined is key (Atom.SupportGridSpacing in
the atomic specification block),
and is directly related to an equivalent plane
wave cutoff (via \(k_{bg} = \pi/\delta\) and \(E_{PW} =
k_{bg}^2/2\), where \(\delta\) is the grid spacing in Bohr radii
and \(E_{PW}\) is in Hartrees).  For a particular grid spacing,
the energy will converge monotonically with support function radius
(Atom.SupportFunctionRange in
the atomic specification block).
A small support function radius will introduce some approximation to
the result, but improve computational performance.  It is vital to
characterise both blip grid spacing and support function radius in any
calculation.  A full discussion of the blip function basis is found
here.
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Basis sets

As we have mentioned in finding the ground state,
the density matrix is represented by support functions.  These, in turn, are made up of basis functions, and
the choice of basis set and how it represents the support functions
affects both the accuracy and performance of a calculation.

There are two kinds of basis functions which are used in CONQUEST to
represent the support functions: pseudo-atomic orbitals (keyword
PAOs) which are the default; and b-splines (keyword blips)
which allow systematic convergence at the expense of greater
complexity.

The basis set is selected as follows:

Basis.BasisSet PAOs





When the basis set is taken to be PAOs, there are three different ways
to construct the support functions, discussed below:


	Each support function is represented by a single PAO (primitive PAOs)


	Multi-site support functions, built from PAOs on several atoms


	on-site support functions, built from PAOs on one atom




Primitive PAOs are efficient for small systems. When using large PAO
basis sets for systems containing more than several hundred atoms,
multi-site support functions and on-site support functions will be
more efficient than primitive PAOs.
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Pseudo-atomic orbitals (PAOs)

PAOs are solutions of the Schrodinger equation for isolated atoms,
using pseudopotentials, with some confinement applied.  They consist
of radial functions multiplied by spherical harmonics.  For the
valence orbitals, the radial functions are referred to as zeta
(\(\zeta\)), while for unoccupied orbitals, they are termed
polarisation.

A minimal PAO basis set is single-\(\zeta\) (SZ), with one
radial function for each angular momentum quantum number in the
valence electrons.  While the cost is significantly lower than for
other basis sets, the accuracy will be rather low.

The accuracy of a calculation can be improved by adding polarisation
functions and multiple radial functions for different angular momentum
values, though systematic improvement is rather difficult to achieve
(this is straightforward with a blip function basis).
The PAO utility included with CONQUEST generates basis sets with
differing sizes and accuracies; full details of the performance of
these basis sets can be found elsewhere [B1].


	minimal (single zeta, SZ)


	small   (single zeta and polarisation, SZP)


	medium  (double zeta, single polarisation, DZP)


	large   (triple zeta, double polarisation, TZDP)
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Primitive PAOs as support functions

The easiest way to prepare support functions is to use primitive PAOs
as the support functions without any modifications. In this case, the
input parameters related to the support functions are automatically
set by obtaining the information from the PAO files (.ion
files) so long as they are generated by the CONQUEST MakeIonFiles
utility, version 1.0.3 or later.  No further input parameters
need to be set in Conquest_input.
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Multi-site support functions

Since the computational cost of Conquest scales cubically with the
number of support functions, contracting the PAOs into a smaller set
of support functions is an efficient way to
reduce the computational cost when we use large multiple-\(\zeta\)
PAO basis sets.  Multi-site support functions (MSSFs)
[B2, B3] are constructed for each
atom by taking linear combinations of the atom’s
PAOs and the PAOs from neighbouring atoms within a certain range
(set with the parameter Atom.MultisiteRange in
the atom specification block).

Multi-site support functions can be selected by setting the following
parameters:

Basis.BasisSet PAOs
Basis.MultisiteSF T





Various other parameters need to be set in the
atom specification block.
The number of support functions for the atoms must be set, and is
normally equivalent to a minimal (single zeta) basis; it is set with
Atom.NumberOfSupports.
(To use a number of support functions larger than this minimal number, the
parameter Multisite.nonminimal needs to be set to T.)
The range for the multi-site support functions (the PAOs of any atom within this
distance of the atom will be included in the support functions)
is set with Atom.MultisiteRange.  The accuracy of the MSSF will
improve as this range is increased, though the computational cost will
also increase; careful tests must be made to find an appropriate
range.  For a minimal number of MSSF, the range must be large enough
to include other atoms, though this restriction can be removed (see
on-site support functions for more details).

As well as setting the range for the MSSFs, we need to specify an
approach for finding the expansion coefficients.  A reasonable set of MSSF
coefficients can be found using the  local filter diagonalization
(LFD) method.  For improved accuracy, this should
be followed by variational numerical optimisation.
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Local filter diagonalization (LFD)

In this method, which is selected by setting Multisite.LFD T, the
MSSF coefficients are found by diagonalising the
Hamiltonian in the primitive PAO basis, for a small cluster of atoms
surrounding the target atom.  The MSSF coefficients \(C\) are determined by
projecting the sub-space molecular orbitals \(C_{sub}\) around each
atom onto localized trial vectors \(t\),

\(C = C_{sub} f(\varepsilon_{sub}) C_{sub}^T S_{sub} t\)

The cluster for diagonalisation must be at least as large as the MSSF
range, but larger clusters tend to give better MSSF coefficients (at the
expense of an increased computational cost).
The LFD sub-space region is determined for each atom by setting
Atom.LFDRange.

An example set of parameters for an MSSF calculation for bulk Si would be:

Basis.BasisSet PAOs
Basis.MultisiteSF T
Multisite.LFD T

%block ChemicalSpeciesLabel
1 28.07 Si
%endblock

%block Si
Atom.NumberOfSupports 4
Atom.MultisiteRange 8.0
Atom.LFDRange 8.0
%endblock





When calculating binding energy curves or optimising cells, a change of
lattice constant can suddenly bring a new set of atoms within the
range of the support functions.  In this case, a smearing can be
applied at the edges of the range, by setting Multisite.Smear T.
Further details are given below.

Some form of self-consistency between the MSSF and the charge density
is required (as the MSSF will determine the Hamiltonian and hence the
output charge density).  At present, this is performed as a complete
SCF cycle for each set of MSSF coefficients (though this is likely to
be updated soon for improved efficiency).  This is selected by default
(but can be turned off by setting the parameter Multisite.LFD.NonSCF T).

This iterative process is not variational, but is terminated when the
absolute energy change between iterations is less than
Multisite.LFD.Min.ThreshE, or the residual (defined in
self-consistency) is less than
Multisite.LFD.Min.ThreshD.

An example input block for this process would be as follows:

Multisite.LFD T
Multisite.LFD.Min.ThreshE 1.0e-6
Multisite.LFD.Min.ThreshD 1.0e-6
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Numerical optimisation

The MSSF coefficients can also be optimised by minimizing the
DFT energy with respect to the coefficients, in a variational
process.  The threshold and the
maximum iteration number of the numerical optimisation are specified
by minE.EnergyTolerance and minE.SupportVariations. The
optimisation is based on the conjugate gradient (CG) method, and the
initial CG step size can be specified by minE.InitStep_paomin
(default is 5.0).

minE.VaryBasis T
minE.EnergyTolerance 1.0e-6
minE.SupportVariations 30





The numerical optimisation provides more accurate coefficients than
the LFD method but is usually more time consuming. Therefore, it is
generally better to start from good initial values, for example, the
coefficients calculated by LFD. When both Multisite.LFD
and minE.VaryBasis are selected,
the initial coefficients will be calculated by LFD
and the coefficients will then be optimised.

Basis.MultisiteSF T
Multisite.LFD T
minE.VaryBasis T





If good initial coefficient values have been found in a previous
calculation, reading these from files (the base name of these files is
SFcoeffmatrix2) and performing only the
numerical optimisation is also a good choice.

Basis.LoadCoeffs T
Basis.MultisiteSF T
Multisite.LFD F
minE.VaryBasis T
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Advanced MSSF concepts

Smearing the edge of the support functions
Here, we are concerned with changes of lattice constant which may
bring new atoms inside the support function range.

We can set the smearing-function type
Multisite.Smear.FunctionType (default=1:Fermi-Dirac, 2=Error
function), the center position of the function
Multisite.Smear.Center (default is equal to the range of the
support functions), offset of the center position
Multisite.Smear.Shift and the width of the Fermi-Dirac function
Multisite.Smear.Width (default=0.1).

Selecting states from the sub-space
Here, we consider how to create the MSSF themselves from the results
of the sub-space diagonalisation.

The Fermi function \(f\) with \(\varepsilon_{sub}\)
Multisite.LFD.ChemP and \(kT\) Multisite.LFD.kT in the
equation removes the effects of the subspace molecular orbitals in
higher energy region.
In default, \(\varepsilon_{sub}\) is automatically set to the mean
value of the subspace HOMO and LUMO energies for each subspace. If
users want to modify this, set Multisite.LFD.UseChemPsub F and the
\(\varepsilon_{sub}\) value with Multisite.LFD.ChemP.

For the LFD trial functions \(t\), when Atom.NumberOfSupports
is equal to the number of SZ or single-zeta plus polarization (SZP),
the PAOs which have the widest radial functions for each spherical
harmonic function are chosen as the trial vectors automatically in
default.
When Atom.NumberOfSupports is equal to the number of SZP and
Multisite.nonminimal.offset is set, the other PAOs will have the
weight in the trial vectors with the value of
Multisite.nonminimal.offset.
The users can also provide the trial vectors from the input file using the LFDTrialVector block

# Trial vectors of Au (element 1) and O (element 2) atoms.
# Au: 15 PAOs (DZP) -> 6 support functions, O: 13 PAOs (DZP) -> 4 support functions.
%block LFDTrialVector
# species sf npao   s   s   x   y   z  d1  d2  d3  d4  d5  d1  d2  d3  d4  d5 for Au
        1  1   15 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        1  2   15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
        1  3   15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
        1  4   15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
        1  5   15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
        1  6   15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
        2  1   13 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        2  2   13 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
        2  3   13 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
        2  4   13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
# species sf npao   s   s   x   y   z   x   y   z  d1  d2  d3  d4  d5 for O
%endblock LFDTrialVector





The first, second and third columns correspond to the indices of
species, support functions for each species, and the number of PAOs
for each species. The other columns provide the initial values of the
trial vectors. For example, in the first line in the above example,
the second s PAO is chosen as the trial vector for the first support
function of Au.

Self-consistent LFD
Two further conditions are applied to end the LFD self-consistency
process.  The maximum number of iterations is set with
Multisite.LFD.Min.MaxIteration.  It is also possible, as the
process is not variational, that the energy can increase as well as
decrease between iterations.  If the energy increase is less than
Multisite.LFD.Min.ThreshEnergyRise (which defaults to ten times
Multisite.LFD.Min.ThreshE) then convergence is deemed to have been
reached.
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On-site support functions

On-site support functions (OSSF) are similar to multi-site support
functions, but are linear combinations of PAOs only on the target atom.
In this case, Atom.MultisiteRange should be small enough not to
include any neighboring atoms (suggested values between 0.1 to
0.5). The number of support functions must be equivalent to the number
of functions in an SZP basis (if polarisation functions are in the
basis set) or an SZ basis (if there are no polarisation functions).
The parameter Multisite.nonminimal should be set to true if
polarisation functions are included.

The coefficients can be determined in the same was as for MSSF (with
the LFD method and/or the numerical optimisation described above).  It
is likely that significant improvement in accuracy will be found with
numerical optimisation.  It is also important to test the effect of
the parameter Atom.LFDRange which should be large enough to
include several shells of neighbouring atoms.

The OSSF approach is most likely to be useful when linear scaling
calculations with large basis sets are required.  An example set of
parmeters is found below.

Basis.BasisSet PAOs
Basis.MultisiteSF T
Multisite.LFD T
Multisite.nonminimal T

minE.VaryBasis T

# example of Si
%block Si
Atom.NumberOfSupports 9
Atom.MultisiteRange 0.1
Atom.LFDRange 8.0
%endblock
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Blips

Blips (which are a type of piecewise continuous polynomial called a
B-spline) [B4] are useful for very accurate calculations, since the basis set
can be systematically improved, in the same way as a planewave basis set.  However, the
calculations can be expensive depending on the parameters, and
the code for blip optimisation is under development.  The following
description, and possible keywords, may change during development.

The blips are defined on a blip grid, which is a regular cubic grid
centred on the atoms, which also moves with the atoms.  The basis set
can be systematically improved, by increasing the support function radius
and/or reducing the spacing of the blip grids.  (The support grid
spacing, which defines the grid for the blips, is equivalent to a
plane wave cutoff; for a given support grid spacing the energy
decreases variationally with support function radius.) For each species,
we need to provide these two parameters, as well as the
number of support functions, which should have a minimal basis size.
(At present, the smallest blip-grid spacing is used for all species.)

For a given atom, we would set:

%block atom
Atom.NumberOfSupports                        4
Atom.SupportFunctionRange                  6.0
Atom.SupportGridSpacing                    0.3
%endblock





For each atomic species, an ion file with a minimal (SZ) basis set is
required for the charge density and to initialise the blips.

The blip-grid spacing is directly related to the cutoff energy of the
wavefunctions in planewave calculations.  For a given cutoff
energy \(E_{\rm cutoff}\) in Hartree, the blip-grid spacing should
be \(\frac{2\pi}{\sqrt{2 E_{\rm cutoff}}}\) in bohr.  Note that
the grid spacing of integration grids (or FFT grids for the charge
density) should be half the spacing of the blip grid, or smaller.

It is essential to optimise the support functions (blip coefficients)
in the case of blips.  The tolerance and maximum number of iterations
can be set with the following keywords:

minE.VaryBasis              T
minE.EnergyTolerance             0.10E-07
minE.SupportVariations             30





It is not recommended, but if memory problems are encountered for
very accurate blip calculations, you may need to switch off the
preconditioning procedure for length-scale ill conditioning by setting
the parameter minE.PreconditionBlips F
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Reading coefficients from files

The calculated linear-combination coefficients of the support
functions are stored in SFcoeffmatrix2 files for PAOs or
blip_coeffs files for blips. Those files can be read by setting
Basis.LoadCoeffs T in the subsequent calculations.

Go to top.



Basis Set Superposition Error

Basis set superposition error (BSSE) arises when the two monomer
units come closer and the basis set localized on one unit can act as
diffuse functions for the electrons from the other unit, and therefore
could be responsible for the overestimation of the binding energy for
the interacting systems.  It is unlikely to affect blip basis
calculations [B5].

To correct this BSSE, the Counterpoise (CP) correction method
[B6] is used, where the artificial stabilization is
controlled by enabling the atoms in monomer calculations to improve
their basis sets by including the basis sets from other monomers
(using so-called ghost atoms).

When systems A and B approach and make a new system AB, the typical
interaction energy between A and B is calculated as:

\(E_{AB}^{int} = E_{AB}(AB) - E_A(A) - E_B(B).\)

where \(E_{AB}(AB)\) is the energy of system AB and
\(E_{A}(A)\) and \(E_{B}(B)\) are the energies of isolated A
and B. The lowerscript and parentheses correspond to the system and
its structure, respectively.

Now, the estimate for the amount of artificial stabilization of A
coming from the extra basis functions from B is:

\(E_{A}^{BSSE} = E_{A\bar{B}}(AB) - E_A(A\text{ in }AB),\)

where \(\bar{A}\) and \(\bar{B}\) are the ghost atoms, which
have basis functions, but no potential or charge density.
\(E_{A\bar{B}}(AB)\) is the energy of system A with
the basis sets from ghost-atom system B in the AB structure. \(E_A(A\text{ in }AB)\)
is the energy of system A in the AB structure but without system B
(neither basis functions nor atoms). Therefore, the subtraction
corresponds to how much system A is stabilized by the basis function
of B.

Similarly, for monomer B,

\(E_{B}^{BSSE} = E_{\bar{A}B}(AB) - E_B(B\text{ in }AB),\)

Subtracting the BSSE part of A and B units from the typical
interaction energy mentioned above, the counterpoise corrected
interaction energy without BSSE \((E_{AB}^{int,CP})\) will be:

\(E_{AB}^{int,CP} = E_{AB}^{int} - E_{A}^{BSSE} - E_{B}^{BSSE}.\)

Practically, to calculate \(E_{A\bar{B}}(AB)\), the basis
functions of B should be placed on atomic centers of B, however with
zero nuclear charge and mass.  This can be performed in CONQUEST by
specifying negative masses for the ghost atoms in B in the block
ChemicalSpeciesLabel of the input file:

%block ChemicalSpeciesLabel
  1   1.01  A
  2  -1.01  B
%endblock
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Electronic Structure

CONQUEST can be used to produce a wide variety of information on the electronic
structure of different systems, including: density of states (DOS) and atom-projected
DOS (or pDOS); band-resolved charge density; band structure; and electronic
polarisation.  Many of these are produced with the post-processing
code using a converged charge density.  All of these (at present)
require the exact diagonalisation approach to the
ground state; linear scaling solutions are not possible.


Converged charge density

In most cases (except polarisation) the data required is produced
by a non-self-consistent calculation which reads in a well-converged charge density.
The convergence is mainly with respect to Brillouin zone sampling,
but also self-consistency (a tight tolerance should be used).  The basic procedure
is:



	Perform a well-converged calculation, writing out charge density (ensure that
the Brillouin zone is well sampled, the SCF tolerance is tight (minE.SCTolerance)
and that the flag IO.DumpChargeDensity T is set)


	Perform a non-self-consistent calculation for the quantity desired
(set minE.SelfConsistent F and General.LoadRho T to read and fix the charge density)
using an appropriate Brillouin zone sampling


	Run the appropriate post-processing to generate the data







However, note that the charge density often converges much faster with respect to
Brillouin zone sampling than the detailed electronic structure, so the use of a
non-self-consistent calculation is more efficient.  Often it is most efficient and
accurate to use a very high density k-mesh for the final, non-SCF calculation, but
a lower density k-mesh to generate the charge density (which converges faster with
respect to Brillouin zone sampling than DOS and other quantities).
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Density of states

The total density of states (DOS) is generated from the file eigenvalues.dat which is
written by all diagonalisation calculations.  See density of states for
details on parameters which can be set.

The atom-projected DOS resolves the total DOS into contributions from individual atoms
using the pseudo-atomic orbitals, and can further decompose this into l-resolved or
lm-resolved densities of states.  It requires the wave-function coefficients, which will be generated
by setting IO.write_proj_DOS T; further analysis is performed in post-processing.

Go to top.



Band structure

The band structure along a series of lines in reciprocal space can be generated.
See post-processing for more details.
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Band-resolved densities

A band-resolved density is the quantity \(\mid \psi_n(\mathbf{r}) \mid^2\)
for the \(n^{\mathrm{th}}\) Kohn-Sham eigenstate (we plot density because
the eigenstates are in general complex).  It requires wavefunction coefficients
which are generated by setting IO.outputWF T.  Full details are found in
the band density section of the post-processing
part of the manual.
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Electronic Polarisation

The electronic polarisation (the response of a material to an
external electric field) can be calculated using the approach
of Resta [ES1] by setting the tag General.CalcPol T.
The direction in which polarisation is found is set using the tag
General.PolDir (choosing 1-3 gives x, y or z, respectively, while
choosing 0 gives all three directions, though this is normally not
recommended).

The Resta approach is a version of the modern theory of polarisation (MTP)
(perhaps better known in the method of King-Smith and Vanderbilt [ES2])
where the polarisation is found as:


\[\begin{split}\mathbf{P} = -\frac{e\mathrm{L}}{\pi V}\mathrm{Im}\mathrm{ln}\mathrm{det}\mathbf{S}\\
\mathrm{S}_{mn} = \langle \psi_{m} \vert \exp{i2\pi \mathbf{r}}/L\vert\psi_{n} \rangle\end{split}\]

where \(\mathrm{L}\) is a simulation cell length along an appropriate direction
and \(V\) is the simulation cell volume.  This approach is only valid in the large
simulation cell limit, with \(\Gamma\) point sampling (e.g. for BaTiO3, a minimum of
3x3x3 formula units is needed, though this is perhaps a little too small).

As with all calculations in the MTP,
the only valid physical quantity is a change of polarisation between two configurations.
A very common quantity to calculate is the Born effective charge (BEC), which is defined
as \(Z^{*}_{k,\alpha\beta} = V\partial P_{\alpha}/\partial u_{k,\beta}\) for species
\(k\) and Cartesian directions \(\alpha\) and \(\beta\). It is most easily
calculated by finding the change in polarisation as one atom (or one set of atoms in
a sublattice) is moved a small amount.
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Structural relaxation

This section describes how to find the zero-Kelvin equilibrium atomic structure, given
a starting structure with non-zero forces and/or stresses. CONQUEST
can employ a variety of algorithms to minimise energy with respect to
atomic positions, including: stabilised quasi-Newton method (SQNM); L-BFGS; conjugate gradients (CG); and damped
molecular dynamics (both MDMin and FIRE approaches).  The minimisation
of energy or enthalpy with respect to cell vectors is restricted to
conjugate gradients at present, though L-BFGS will be implemented.

Setting AtomMove.WriteXSF T for all flavours of optimisation will dump the
trajectory to the file trajectory.xsf, which can be visualised using VMD [https://www.ks.uiuc.edu/Research/vmd/] and XCrysDen [http://http://www.xcrysden.org].
Setting AtomMove.AppendCoords T
will append the structure at each step to UpdatedAtoms.dat in the format of a
CONQUEST structure input.

For the SQNM, L-BFGS and conjugate gradients relaxations, the progress of the calculation can be
monitored by searching for the word GeomOpt; grepping will print the
following:

$ grep GeomOpt Conquest_out
GeomOpt - Iter:    0 MaxF:   0.00329282 H:  -0.14168571E+03 dH:   0.00000000
GeomOpt - Iter:    1 MaxF:   0.00331536 H:  -0.14168995E+03 dH:   0.00424155
GeomOpt - Iter:    2 MaxF:   0.00350781 H:  -0.14168997E+03 dH:   0.00001651
GeomOpt - Iter:    3 MaxF:   0.00504075 H:  -0.14169161E+03 dH:   0.00164389
GeomOpt - Iter:    4 MaxF:   0.00725611 H:  -0.14169172E+03 dH:   0.00010500
GeomOpt - Iter:    5 MaxF:   0.01134145 H:  -0.14169329E+03 dH:   0.00157361
GeomOpt - Iter:    6 MaxF:   0.01417229 H:  -0.14169385E+03 dH:   0.00056077
GeomOpt - Iter:    7 MaxF:   0.01434628 H:  -0.14169575E+03 dH:   0.00190304
GeomOpt - Iter:    8 MaxF:   0.01711197 H:  -0.14170001E+03 dH:   0.00425400
GeomOpt - Iter:    9 MaxF:   0.02040556 H:  -0.14170382E+03 dH:   0.00381110
GeomOpt - Iter:   10 MaxF:   0.01095167 H:  -0.14170752E+03 dH:   0.00370442





In this example, MaxF is the maximum single force component, H is the enthalpy and dH is the
change in enthalpy.
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Ionic relaxation

To optimise the ionic positions with respect to the DFT total energy, the
following flags are essential:

AtomMove.TypeOfRun sqnm
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T





The parameter AtomMove.TypeOfRun can take the values sqnm, lbfgs or
cg for iterative optimisation.  All three algorithms are robust and
relatively efficient in most instances; SQNM [SR1] is recommended in most cases,
though if the initial forces are large it may be worth performing quenched
MD to reduce them (see below) before applying SQNM. The
parameter AtomMove.MaxForceTol specifies the force
convergence criterion in Ha/bohr, i.e. the calculation will terminate
when the largest force component on any atom is below this value.
The parameter
AtomMove.ReuseDM  specifies that the density matrix (the K-matrix for
diagonalisation or L-matrix for O(N) calculations) from the
previous step will be used as an initial guess for the SCF cycle after
propagating the atoms; this should generally decrease the number of SCF cycles
per ionic step.  When using CG, the line minimiser can be chosen: safe uses a robust though sometimes slow line minimiser; backtrack uses a simple back-tracking line minimiser (starting with a step size of 1 and reducing if necessary to ensure the energy goes down); adapt uses an adaptive back-tracking line minimiser (which increases the starting step size if the energy goes down on the first step).  In many cases the back-tracking line minimiser is more efficient, though the efficiency of the adaptive approach varies with problem.

If the self-consistency tolerance is too low, the optimisation may fail to
converge with respect to the force tolerance; this may necessitate a tighter
minE.SCTolerance for diagonalisation (also possibly
minE.LTolerance for O(N) calculations).  A grid which is too
coarse can also cause problems with structural relaxation to high tolerances.

For large initial forces or problematic cases where the relaxation algorithms fail to find a
downhill search direction, it may be worth trying quenched molecular dynamics,
which propagates the equations of motion following a simple NVE
approach, but resets the velocities to zero when the dot product of
force and velocity is zero.

AtomMove.TypeOfRun md
AtomMove.QuenchedMD T
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T





The FIRE algorithm [SR2] is a variant of quenched MD
that has been shown to outperform conjugate gradients in some
circumstances.

AtomMove.TypeOfRun md
AtomMove.FIRE T
AtomMove.MaxForceTol 5e-4
AtomMove.ReuseDM T
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Simulation cell optimisation

The simulation cell can be optimised with respect to enthalpy with fixed fractional
coordinates (AtomMove.OptCellMethod 1) using the following input:

AtomMove.TypeOfRun cg
AtomMove.OptCell T
AtomMove.OptCellMethod 1
AtomMove.ReuseDM T
AtomMove.EnthalpyTolerance 1E-5
AtomMove.StressTolerance 0.1





Note that stress is in GPa and enthalpy is in Ha by default.
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Combined optimisation

For simple crystals, the fractional ionic coordinates vary trivially with
changes in the simulation cell lengths; however for more complicated systems such as
molecular crystals and amorphous materials, it is necessary simultaneously relax
the ionic positions and simulation cell lengths (recalling that CONQUEST only
allows orthorhombic unit cells). This can be done by setting
AtomMove.OptCellMethod 2 or AtomMove.OptCellMethod 3

AtomMove.TypeOfRun cg
AtomMove.OptCell T
AtomMove.OptCellMethod 2
AtomMove.ReuseDM T
AtomMove.MaxForceTol 5e-4
AtomMove.EnthalpyTolerance 1E-5
AtomMove.StressTolerance 0.1





Note that stress is in GPa and enthalpy is in Ha by default.

The enthalpy will generally converge much more rapidly than the force
and stress, and that it may be necessary to tighten minE.SCTolerance
(diagonalisation) or minE.LTolerance (order(N)) to reach the force
and stress tolerance, if it is even possible.  For combined optimisation,
we recommend using AtomMove.OptCellMethod 2,
which uses a simple but robust double-loop minimisation: a full ionic
relaxation (using either cg or sqnm) followed by a full simulation cell
relaxation (using cg).  While this may be less efficient than optimising all
degrees of freedom simultaneously, it is much more robust.  It is also possible
to optimise cell vectors and atomic positions simultaneously, using AtomMove.OptCellMethod 3,
but this should be monitored carefully, as it can be unstable.
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Molecular Dynamics

CONQUEST can perform molecular dynamics both when the density matrix is computed
using diagonalisation and O(N), the latter allowing dynamical simulations of
(but not limited to) tens of thousands of atoms. The equations of motion are
integrated using the velocity Verlet method in the case of the microcanonical
ensemble (NVE), and modifications thereof for the canonical (NVT) and
isobaric-isothermal (NPT) ensembles, the details of which can be found in
Molecular Dynamics: Theory. In addition to converging the parameters for the electronic
structure calculations, the following points must also be considered.
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Self-consistency tolerance and XL-BOMD

The convergence of the electronic structure is important in MD, as
insufficient convergence can be responsible for “drift” in the
conserved quantity of the dynamics. Although the molecular dynamics
integrators used in CONQUEST are time reversible, the SCF procedure
is not. Therefore tight convergence (minE.SCTolerance for
diagonalisation, minE.LTolerance for linear scaling) is
necessary. In the case of diagonalisation, SCF tolerance of 1E-6 is
typically enough to negate the drift. However, extended-Lagrangian
Born-Oppenheimer MD (XL-BOMD) [MD1], currently only
implemented for O(N), essentially makes the SCF component of the MD
time-reversible by adding the electronic degrees of freedom to the
Lagrangian, relaxing the constraint on minE.LTolerance —
although it is still somewhat dependent on the ensemble.  In the NVE
and NVT ensembles, a L-tolerance of 1E-5 has been found to be
sufficient to give good energy conservations, decreasing to 1E-6
in the NPT ensemble. The following flags are required for XL-BOMD:

DM.SolutionMethod ordern
AtomMove.ExtendedLagrangian T
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Restarting

Assuming the calculation ended gracefully, it can easily be restarted by
setting,

AtomMove.RestartRun T





This will do several things: it will read the atomic coordinates from
md.position and read the md.checkpoint file, which contains the
velocities and extended system (Nose-Hoover chain and cell) variables. Depending
on the value of DM.SolutionMethod, it will read the K-matrix files
(diagon) or the L-matrix files (ordern), and if XL-BOMD is being used,
the X-matrix files. Finally, it will append new data to the md.stats and
md.frames files, but it will overwrite all other files, including
Conquest_out. Note that this flag is equivalent to setting the following:

General.LoadL T
SC.MakeInitialChargeFromK T
XL.LoadL T





In addition to the files mentioned above, CONQUEST will try to read the K-matrix
from Kmatrix2.i00.* when using diagonalisation or the L-matrix from
Lmatrix2.i00.* when using O(N), and Xmatrix2.i0*.* if the
extended-Lagrangian formalism is used. Note that metadata for these files is
stored in InfoGlobal.i00.dat which is also required when restarting. If the
calculation ended by hitting the walltime limit, the writing of these matrix
files may have been interrupted, rendering them unusable. In this case, the
calculation can be restarted by setting the above flags to F after setting
AtomMove.RestartRun T. Setting the flag General.MaxTime to some number
of seconds less (say 30 minutes) than the calculation wall time limit will force
the calculation to stop gracefully, preventing the aforementioned situation.
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Visualising the trajectory

Setting the flag AtomMove.WriteXSF T dumps the coordinates to the file
trajectory.xsf every AtomMove.OutputFreq steps. The .xsf file can be
read using VMD [https://www.ks.uiuc.edu/Research/vmd/]. A small VMD script,
view.vmd is included with the code, and can be invoked using,

vmd -e view.vmd

assuming the vmd executable is in your path.
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TDEP output

CONQUEST molecular dynamics data can be used to perform lattice dyanmical
calculations using the Temperature Dependent Effective Potential (TDEP) [https://ollehellman.github.io/index.html] code. Setting the flag MD.TDEP
T will make conquest dump configurations, forces and metadata in a format
readable by TDEP.
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Non-Hamiltonian dynamics


Canonical (NVT) ensemble

The thermostat is set using the MD.Thermostat flag, and can take the values
svr (stochastic velocity rescaling) and nhc (Nose-Hoover
chain). These thermostats generate the correct canonical ensemble
phase space distribution, and both give a conserved quantity that
allows the quality of the dynamics to be monitored.


	Stochastic velocity rescaling




AtomMove.IonTemperature 300.0
MD.Ensemble nvt
MD.Thermostat svr
MD.tauT 10





While the NHC uses chaotic sensitivity to initial conditions to achieve better
ergodicity, the SVR thermostat [MD2] uses a judiciously chosen stochastic force
coupled to a weak scaling thermostat to correctly generate the
canonical phase space distribution. The MD.tauT parameter gives
the coupling timescale; the velocity scaling factor is modified by a
factor \(\Delta t/\tau\), so a larger \(\tau\) results in a
more slowly varying temperature.  While some characterisation of the
system is recommended, values of \(\tau\) around 20–200fs are
reasonable.  To reproduce a simulation, the random number
generator seed can be set with the General.RNGSeed <integer> flag.


	Nose-Hoover chain




AtomMove.IonTemperature 300.0
MD.Ensemble nvt
MD.Thermostat nhc
MD.nNHC 5
MD.nYoshida 5
MD.tauT 30





When thermostatting using a Nose-Hoover chain [MD3, MD4, MD5], it may be necessary to set a
couple more flags. MD.nNHC sets the number of thermostats in the chain (the
default of 5 is generally sensible), and MD.nYoshida determines the order of
Yoshida-Suzuki integration. This is essentially a higher level integration
scheme that can improve energy conservation in cases when rapid changes in the
Nose-Hoover thermostat velocity is causing integration errors. Note that
MD.tauT means something different to the SVR case. A good guess is
the time period of the highest frequency motion of the system in fs; however, in
the NVT ensemble, the energy conservation is not very sensitive to this value.
The NHC masses can also be set manually using the following block.

MD.CalculateXLMass F
MD.nNHC 5
%block MD.NHCmass
  5 1 1 1 1
%endblock
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Isobaric-Isothermal (NPT) ensemble

There is one implemented barostat at present, the extended
system, Parrinello-Rahman [MD6]. At present the
barostat should be treated as a beta-version implementation, which
will be fully characterised and made robust for the full release of
the code.


	Parrinello-Rahman




AtomMove.IonTemperature 300.0
AtomMove.TargetPressure 10.0
MD.Ensemble npt
MD.Thermostat nhc
MD.Barostat pr
MD.nNHC 5
MD.nYoshida 5
MD.tauT 100
MD.tauP 200
MD.PDrag 10.0





The Parrinello-Rahman barostat generates the correct ensemble, but can
be subject to low frequency “ringing” fluctuations in the
temperature and pressure that can destabilise the system or slow equilibration.
Unlike in the NVT ensemble, this combination of barostat and thermostat is
very sensitive to the choice of both MD.tauT and MD.tauP; note that
their values are somewhat higher in this case, since integration errors in the
NHC tend to be more severe due to coupling of the cell and atomic motions. They
are dependent on the system, so it is advised that you find a combination of
these parameters that gives the best energy conservation. The cell is
thermostatted using a separate Nose-Hoover chain to the atoms by default, but
they can be controlled with the same chain by setting MD.CellNHC F. An ad
hoc drag factor specified by MD.PDrag reduces the thermostat and cell
velocities at every timestep to damp out the ringing fluctuations. In this case,
they are reduced by \(10/200 \simeq 5\%\), which strictly speaking breaks the NPT
dynamics, but not significantly, and the stability is significantly improved.

Note that the NPT ensemble can also be generated correctly by thermostatting
using the SVR thermostat, although the meaning of the parameter MD.tauT is
different in this case, as in NVT dynamics.




Postprocessing tools

Details of Python post-processing tools for CONQUEST can be found in Molecular dynamics analysis.
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Post-processing CONQUEST output


Introduction

The utility PostProcessCQ allows users to post-process the output
of a CONQUEST calculation, to produce structure files, densities of
states, and charge density, band
densities and STM images as CUBE
files (which can be read by the freely available VESTA [https://jp-minerals.org/vesta/en/] code).

There are a number of different analyses which can be performed:
coordinate conversion (to formats which can be plotted); conversion of
total charge density to CUBE file format; production of band-resolved
(optionally k-point resolved) densities in CUBE file format; simple
Tersoff-Hamann STM simulation; and calculation of densities of states,
including projected DOS.  You should ensure that all the files
produced during the CONQUEST run are available for the post-processing
(including eigenvalues.dat, chden.NNN, make_blk.dat or
hilbert_make_blk.dat and ProcessNNNNNNNWF.dat and
ProcessSijNNNNNNNWF.dat as applicable) as well as the input files.

Note that the utility reads the Conquest_input file, taking some
flags from the CONQUEST run that generated the output, and some
utility-specific flags that are detailed below.

Note also that projected DOS, band density and STM simulation are
not at present compatible with multi-site support functions (MSSF),
though we hope to implement this soon.
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Coordinate conversion

Set Process.Job coo to output a coordinate file for further
processing or plotting.  The utility will read the file specified by
Process.Coordinates (which defaults to the file specified by
IO.Coordinates).  The output format is selected by specifying the
Process.CoordFormat tag.  The default output format is XYZ (which
adds a .xyz suffix to the file name) using xyz.  The CASTEP
.cell output format can also be selected using cell.  We plan to
expand this conversion to other formats in the future.

Note that for a structural relaxation or molecular dynamics
calculation, if you do not specify Process.Coordinates then the
IO.Coordinates file, which will be converted, will be the input
structure, not the output structure.  Parameters that can be set are:

Process.Coordinates string (default: IO.Coordinates value)
Process.CoordFormat string (default: xyz; options: xyz, cell)
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Charge density

Setting Process.Job to cha, chg or den will convert
the files chden.NNN which are written by CONQUEST to a cube file.
The processing will use the files chden.NNN, Conquest_input
and hilbert_make_blk.dat or raster_make_blk.dat.  Parameters
that can be set include:

Process.ChargeStub string (default: chden)





The ChargeStub simply defines the filename which will be read, and
used for output.

Note that to output the chden.NNN files from CONQUEST, you must
set the flag IO.DumpChargeDensity T in the CONQUEST run.
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Band density

Setting Process.Job to ban produces band densities from wave
function coefficients output by CONQUEST.  The CONQUEST run must have
the following tags set:

IO.outputWF T





A set of bands whose coefficients are output are specified either with
an energy range (the default is to produce all bands):

IO.WFRangeRelative T/F
IO.min_wf_E real (Ha)
IO.max_wf_E real (Ha)





or with a list of bands:

IO.maxnoWF n

%block WaveFunctionsOut
n entries, each a band number
%endblock





The wavefunction range can be relative to the Fermi level
(IO.WFRangeRelative T) otherwise it is absolute.  Either of these
will produce a file containing all eigenvalues at all k-points
(eigenvalues.dat) and a series of files containing the
wavefunction expansion coefficients for the selected bands
(ProcessNNNNNNNWF.dat).  These files are output as binary
(unformatted) by default (this can be changed by setting
IO.MatrixFile.BinaryFormat F before the CONQUEST run) and will be
read using the same format (it is important to check this!).

From these wavefunction coefficient files, band densities can be
produced in post-processing, using similar tags; either a range:

Process.min_wf_E real (Ha)
Process.max_wf_E real (Ha)
Process.WFRangeRelative T/F





or an explicit list of bands:

Process.noWF n

%block WaveFunctionsProcess
n entries, each a band number
%endblock





Note that the bands to be processed must be a subset of the bands
output by CONQUEST.  The bands can be output summed over k-points, or
at individual k-points, by setting Process.outputWF_by_kpoint to
F or T respectively.

Go to top.



Tersoff-Hamann STM simulation

Setting Process.Job ter will use a very simple Tersoff-Hamann
approach to STM simulation, summing over band densities between the
Fermi level and the bias voltage (this is often surprisingly
accurate).  The following parameters can be set:

STM.BiasVoltage    real (eV)
STM.FermiOffset    real (eV)
Process.MinZ       real (Bohr)
Process.MaxZ       real (Bohr)
Process.RootFile   string (default: STM)





The FermiOffset tag allows the user to shift the Fermi level (to simulate
charging or an external field).  The height of the simulation cell
in which the STM image is calculated is set by the MinZ and
MaxZ tags, and the filename by the RootFile tag.
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Density of states (DOS)

Setting Process.Job dos will produce a total density of states
(DOS) for the system, using the eigenvalues output by CONQUEST.  The
following parameters can be set:

Process.min_DOS_E real    (Ha, default lowest eigenvalue)
Process.max_DOS_E real    (Ha, default highest eigenvalue)
Process.sigma_DOS real    (Ha, default 0.001)
Process.n_DOS     integer (default 1001)





The limits for the DOS are set by the first two parameters (note that
CONQUEST will output all eigenvalues, so the limits on these are set
by the eigenspectrum).  The broadening applied to each state is set by
sigma_DOS, while the number of bins is set by n_DOS.  The
integrated DOS is also calculated; the user can choose whether this
is the total integrated DOS (i.e. from the lowest eigenvalue,
regardless of the lower limit for DOS) or just the local integrated
DOS (i.e. over the interval specified for the DOS) by setting
Process.TotalIntegratedDOS to T or F, respectively.

We recommend that, for accurate DOS, CONQUEST should be run
non-self-consistently with a very high k-point density, after reading
in a well-converged input charge density: set minE.SelfConsistent
F and General.LoadRho T (which will require that the converged
charge density is written out by CONQUEST by setting IO.DumpChargeDensity T).
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Atom-projected DOS

Setting Process.Job pdos will produce a total density of states as
above, as well as the density of states projected onto the individual
atoms.  Given support functions \(\phi_{i\alpha}(\mathbf{r})\)
which are the basis functions of the Kohn-Sham eigenstates
\(\psi_{n}(\mathbf{r}) = \sum_{i\alpha}
c^{n}_{i\alpha}\phi_{i\alpha}(\mathbf{r})\), then the projection of a
given state, \(n\), onto an atom \(i\) can be written as
\(\sum_{\alpha j\beta} c^{n}_{i\alpha}
S_{i\alpha,j\beta}c^{n\mathbf{k}}_{j\beta}\).  The projected DOS is
constructed using these projections.

If using pseudo-atomic orbitals (PAOs) as the
basis set, then the atom-projected DOS can be further resolved by
angular momentum (either just \(l\) or both \(l\) and
\(m\)).  If using pseudo-atomic orbitals (PAOs) with multi-site support functions or
blip functions then it is not possible to
decompose the DOS any further (in future, it may be possible to
resolve the MSSF coefficients into the individual PAOs, and hence
decompose pDOS by angular momentum).  To output the necessary
coefficients to produce atom-projected DOS, a CONQUEST run must be
performed with the following parameters set:

IO.writeDOS T
IO.write_proj_DOS T





As for the DOS, very high Brillouin zone sampling is required for
accurate projected DOS, which is most efficiently generated using a
converged charge density and a non-self-consistent calculation with
much higher k-point density.  CONQUEST will produce the wavefunction
files (ProcessNNNNNNNWF.dat and ProcessSijNNNNNNNWF.dat) as
binary (unformatted) by default (change using the flag
IO.MatrixFile.BinaryFormat F).

Once the files have been generated by CONQUEST, the output can be
processed by setting the output tag:

Process.Job pdos





This is all that is needed for the simplest output.  The number of
bins and smearing of the peaks can be set using:

Process.sigma_DOS 0.002
Process.n_DOS 10001





To resolve the DOS by angular momentum as well as by atom, then the
following flags can be set:

Process.pDOS_l_resolved T
Process.pDOS_lm_resolved T





Note that only one of these is needed, depending on what level of
resolution is required.  At present, angular momentum resolution is
only available for the PAO basis set (not MSSF or blips) though it
is under development for the MSSF basis (by projection onto the
underlying PAO basis).

The energy range for the projected DOS can
also be specified:

Process.min_DOS_E -0.35
Process.max_DOS_E  0.35
Process.WFRangeRelative T





where the final tag sets the minimum and maximum values relative to
the Fermi level.

If you only want to produce pDOS for a few atoms, then you can set
the  variable Process.n_atoms_pDOS and list the atoms you want
in the block pDOS_atoms:

Process.n_atoms_pDOS 2
%block pDOS_atoms
1
12
%endblock
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Band structure

The band structure of a material can be generated by CONQUEST by performing
a non-self-consistent calculation, after reading a well-converged charge density:
set minE.SelfConsistent F and General.LoadRho T (remember that to write
a converged charge density from CONQUEST you set IO.DumpChargeDensity T).
The k-points required can be specified as lines of points in k-space;
setting Diag.KspaceLines T enables this (replacing the usual MP mesh), while the number of lines
(e.g. Gamma to L; L to X; would be two lines) is set with Diag.NumKptLines
and the number of points along a line with Diag.NumKpts.  The k-point lines
themselves are set with a block labelled Diag.KpointLines which should have
two entries (starting and finishing k-points) for each k-point line.
(In constructing the k-point list, CONQUEST will automatically remove any duplicate
points, so that the output can be plotted smoothly.)  So to create
a bandstructure from X-\(\Gamma\)-L-X (3 lines: X-\(\Gamma\); \(\Gamma\)-L;
L-X) with 11 points in each line, you would use the following input:

Diag.KspaceLines T
Diag.NumKptLines 3
Diag.NumKpts 11
%block Diag.KpointLines
0.5 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
0.5 0.5 0.5
0.5 0.5 0.5
0.5 0.0 0.0
%endblock





After running CONQUEST, setting Process.Job bst and running the post-processing
will read the resulting
eigenvalues.dat file, and produce a file BandStructure.dat.  The x-axis will
be the k-point index by default, but specifying Process.BandStrucAxis (taking
value n for index, x, y or z for a single direction in k-space,
or a to give all k-point coordinates) will allow you to control this.  Limits
on the energies to select the bands produced can be set
with Process.min_DOS_E and Process.max_DOS_E.
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Managing Conquest with ASE

Below we give an introduction how to setup the ASE environment with respect
to CONQUEST repository along with a few examples of ASE/Conquest capabilities.
We assume that a python script or jupyter-notebook is used.


Setup


Environment variables

The script will need to set environmental variables specifying the
locations of the CONQUEST executable Conquest, and if required, the basis
set generation executable MakeIonFiles and pseudopotential database.
These variables are:


	ASE_CONQUEST_COMMAND: the Conquest executable command including MPI/openMPI prefix.


	CQ_PP_PATH: the PAO path directory to where are located the the .ion files.


	(optional) CQ_GEN_BASIS_CMD : the PAO generation executable MakeIonFiles.




Given the Conquest root directory CQ_ROOT, initialisation might look to something like

import os

CQ_ROOT = 'PATH_TO_CONQUEST_DIRECTORY'

os.environ['ASE_CONQUEST_COMMAND'] = 'mpirun -np 4 '+CQ_ROOT+'/bin/Conquest'
os.environ["CQ_GEN_BASIS_CMD"] = CQ_ROOT+'/bin/MakeIonFiles"
os.environ['CQ_PP_PATH'] = CQ_ROOT+'/pseudo-and-pao/'
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Pseudopotential/PAO files

Conquest atomic pseudotential and basis functions are store in the .ion
files which will ne referred as to PAO files. Provided the pseudopotential files .pot available in CQ_PP_PATH,
automatic generation of numerical PAOs is possible using the program MakeIonFiles
available from the Conquest package.

Provided the PAO files, the basis set is specified through a python dictionary,
for example:

basis = {'O' : {'file': 'O_SZP.ion'},
         'H' : {'file': 'H_SZP.ion'},
         'C' : {'file': 'C_SZP.ion'}}





In this case they are all assumed to be obtained from Hamann pseudopotentials,
which are the default. Knowing the the exchange and correlation functional <XC>
from the Conquest input (vide infra) and the chemical symbol <X>, the Calculator
will search the .ion file in different places:

CQ_PP_PATH
CQ_PP_PATH/lib/
CQ_PP_PATH/<XC>/<X>/





including the current directory and the ASE working directory (vide infra). If
your PAO file is located in a different place you can include the path in the
basis dictionary:

basis = {'O' : {'file': 'O_SZP.ion',
                'directory': '<PATH_TO_FILE>'},
         'H' : {'file' : 'H_SZP.ion'},
         'C' : {'file' : 'C_SZP.ion'}}





For generating the PAO files, the keyword gen_basis should be set to True
(default is False) and the size be provided (default is medium).
For instance:

basis = {'O' : {'gen_basis' : True,
                'basis_size': 'small'},
         'C' : {'gen_basis' : True,
                'basis_size': 'medium'},
         'H' : {'gen_basis' : True,
                'basis_size': 'large'}}





will create the O.ion, C.ion and H.ion files where small, medium and large
are default size basis set. You are allowed to choose the functional and
to add options for basis set generation:

basis = {'H' : {'gen_basis' : True,
                'basis_size': 'small',
                'xc'        : 'LDA',
                'Atom.Perturbative_Polarised': False}}






Note

Only Hamann pseudopotentials for LDA, PBE and PBEsol are available within
the CONQUEST distribution. For using other functionals see
Generating new pseudopotentials.




Warning

Generating polarised PAOs for some atoms can be problematic (mainly group I
and II). Please review carefuly the MakeIonFiles input files
named Conquest_ion_input which are collected in CQ_PP_PATH/<XC>/<X>/
if you are not sure about what you are doing, and check your PAOs.
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CONQUEST Calculator

The CONQUEST Calculator class can be invoked from the ase Calculator set as described
in the example below:

from ase.calculators.conquest import Conquest





A minimal example is given below for setting the CONQUEST Calculator (named calc)
of the ASE Atoms object [https://wiki.fysik.dtu.dk/ase/ase/atoms.html#module-ase.atoms]
named struct:

from ase.calculators.conquest import Conquest
from ase.build import bulk

struct = bulk('NaCl', crystalstructure='rocksalt', a=5.71, cubic=True)
basis  = {'Cl' : {'file' : 'Cl.ion'}, 'Na' : {'file' : 'Na.ion'}}

calc = Conquest(basis=basis,atoms=struct)





or, equivalently,

from ase.calculators.conquest import Conquest
from ase.build import bulk

struct = bulk('NaCl', crystalstructure='rocksalt', a=5.71, cubic=True)
basis  = {'Cl' : {'file' : 'Cl.ion'}, 'Na' : {'file' : 'Na.ion'}}

struct.calc = Conquest(basis=basis)





In basic calculate mode (compute energy), the Calculator comes with 3 methods:


	
	write_input():
	this function will setup the input files. For CONQUEST, the PAO basis will be generated/copied with respect to the dictionary key/value pairs, and Conquest_input file including the calculation parameters will be written, a long with the coordinate file, containing the lattice vectors (in Bohr Unit) and atomic positions (in fractional coordinates).







	
	execute():
	this function execute the calculation. For CONQUEST, it will launch the ASE_CONQUEST_COMMAND setup in the environment varaibles.







	
	read_results():
	this function post-process the the output file. For CONQUEST, the energy, forces, stress and eigenvalues will be extracted from the Conquest_out_ase output file.










Note

The funtion read_results() operate on the  Conquest_out_ase file.
This output file is not created by default by CONQUEST. If you want to post-process
a calculation with an input generated by hand you must add IO.WriteOutToASEFile True
in conquest_input.



The indirect way for managing CONQUEST calculation with ASE is:

struct.calc = Conquest(basis=basis)

struct.calc.write_input(struct)
struct.calc.execute()
struct.calc.read_results(struct)





where struct.calc.execute() can be ignored when, for instance, the calculation
is performed on a supercomputer and the output file is then copied back to the current
directory for post-processing.

The direct way is simply:

struct.calc = Conquest(basis=basis)

struct.calc.calculate(struct)





or, equivalently,

struct.calc = Conquest(basis=basis)

struct.get_potential_energy()
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Keywords for generating the Conquest_input file

In principle all the Conquest input parameters [https://conquest.readthedocs.io/en/latest/input_tags.html]
can be added to Conquest_out_ase using key/value pairs in a dictionary. There are 3 class of parameters:


	mandatory : they are parsed to the Calculator and have no defaults ; there are mandatory.


	important : they are parsed to the Calculator they can be freely modified. Some of them are pure ASE keywords.


	defaults : they are set as defaults ; some of them must not be modified. They are read by the Calculator through a dictionay conquest_flags.





Mandatory keywords



	keyword

	type

	default value

	description





	atoms

	atoms

	None

	an atoms object constructed either via ASE or read from an input



	basis

	dict

	None

	a dictionary specifying the pseudopotential/basis files








Important keywords



	keyword

	CONQUEST equivalence

	type

	default value

	description





	directory

	None

	str

	None

	directory used for storing input/output and calculation files



	label

	None

	str

	None

	basename for working files (only used by ASE, eg. NEB)



	kpts

	None

	list or tuple

	None

	k-points grid ; converted to CONQUEST Monkhorst-Pack grid



	grid_cutoff

	Grid.GridCutoff

	float

	100

	integration grid in Ha



	xc

	General.FunctionalType

	str

	‘PBE’

	exchange and correlation functional



	self_consistent

	minE.SelfConsistent

	bool

	True

	choose either SCF or non-SCF



	scf_tolerance

	minE.SCTolerance

	float

	1e-6

	Self-consistent-field convergence tolerance in Ha



	nspin

	Spin.SpinPolarised

	int

	1

	spin polarisation: 1 for unpolarized or 2 for polarised



	conquest_flags

	None

	dict

	None

	other CONQUET keyword arguments








Defaults keywords



	keyword

	type

	default value

	description





	IO.WriteOutToASEFile

	bool

	True

	write ASE output file ; must always be True when using ASE for post-processing



	IO.Iprint

	int

	1

	verbose for the output ; must always be 1 when using ASE for post-processing



	DM.SolutionMethod

	str

	‘diagon’

	‘diagon’ stands for diagonalisation other is ‘ordern’ (base on density matrix)



	General.PseudopotentialType

	str

	‘Hamann’

	kind of pseudopotential other type are ‘siesta’ and ‘abinit’



	SC.MaxIters

	int

	50

	maximum number SCF cycles



	AtomMove.TypeOfRun

	str

	‘static’

	‘static’ stands for single (non)SCF other are ‘md’ or optimisation algorithms.



	Diag.SmearingType

	int

	1

	1 for Methfessel-Paxton ; 0 for Fermi-Dirac



	Diag.kT

	float

	0.001

	smearing temperature in Ha









Some examples

An example of more advanced Calculator setup is given below for a SCF calculation on BCC-Na
where for a PBE calculation using a k-point grid of \(6\times 6\times6\) using the Fermi-Dirac
distribution for the occupation with a smearing of 0.005 Ha:

struct = bulk('Na', crystalstructure='bcc', a=4.17, cubic=True)
basis  = {'Na' : {'file' : 'NaCQ.ion'}}

conquest_flags = {'Diag.SmearingType': 0,
                  'Diag.kT'          : 0.005}

struct.calc = Conquest(directory      = 'Na_bcc_example',
                       grid_cutoff    = 90.0,
                       self_consistent= True,
                       xc    = 'PBE',
                       basis = basis,
                       kpts  = [6,6,6],
                       nspin = 1,
                       **conquest_flags)

struct.get_potential_energy()





Finally, defaults and other input flags can be defined in a new dictionary, and
passed as an expanded set of keyword arguments.

conquest_flags = {'DM.SolutionMethod' : 'ordern',
                  'DM.L_range'        : 12.0,
                  'minE.LTolerance'   : 1.0e-6}





Here is an example, combining the above. We set up a cubic diamond cell
containing 8 atoms, and perform a single point energy calculation using the
order(N) method (the default is diagonalisation, so we must specify all of the
order(N) flags). We don’t define a basis set, instead providing keywords that
specify that a minimal basis set should be constructed using the MakeIonFiles
basis generation tool.

import os
from ase.build import bulk
from ase.calculators.conquest import Conquest

CQ_ROOT = 'PATH_TO_CONQUEST_DIRECTORY'

os.environ['ASE_CONQUEST_COMMAND'] = 'mpirun -np 4 '+CQ_ROOT+'/bin/Conquest'
os.environ["CQ_GEN_BASIS_CMD"] = CQ_ROOT+'/bin/MakeIonFiles"
os.environ['CQ_PP_PATH'] = CQ_ROOT+'/pseudo-and-pao/'

diamond = bulk('C', 'diamond', a=3.6, cubic=True)  # The atoms object
conquest_flags = {'DM.SolutionMethod' : 'ordern',  # Conquest keywords
                  'DM.L_range'        : 12.0,
                  'minE.LTolerance'   : 1.0e-6}

basis = {'C': {'basis_size' : 'minimal', # Generate a minimal basis
               'gen_basis'  : True}

calc = Conquest(grid_cutoff = 80,    # Set the calculator keywords
                xc = 'PBE',
                self_consistent=True,
                basis = basis,
                nspin = 1,
                **conquest_flags)

diamond.set_calculator(calc)             # attach the calculator to the atoms object
energy = diamond.get_potential_energy()  # calculate the potential energy
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Multisite support functions

Multisite support functions require a few additional keywords in the atomic
species block, which can be specified as follows:

basis = {'C': {"basis_size": 'medium',
               "gen_basis": True,
               "pseudopotential_type": "hamann",
               "Atom.NumberofSupports": 4,
               "Atom.MultisiteRange": 7.0,
               "Atom.LFDRange": 7.0}}





Note that we are constructing a DZP basis set (size medium) with 13 primitive
support functions using MakeIonFiles, and contracting it to multisite basis
of 4 support functions. The calculation requires a few more input flags, which
are specified in the other_keywords dictionary:

other_keywords = {"Basis.MultisiteSF": True,
                  "Multisite.LFD": True,
                  "Multisite.LFD.Min.ThreshE": 1.0e-7,
                  "Multisite.LFD.Min.ThreshD": 1.0e-7,
                  "Multisite.LFD.Min.MaxIteration": 150,
                  }
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Loading the K/L matrix

Most calculation that involve incrementally moving atoms (molecular dynamics,
geometry optimisation, equations of state, nudged elastic band etc.) can be made
faster by using the K or L matrix from a previous calculation as the initial
guess for a subsequent calculation in which that atoms have been moved slightly.
This can be achieved by first performing a single point calculation to generate
the first K/L matrix, then adding the following keywords to the calculator:

other_keywords = {"General.LoadL": True,
                  "SC.MakeInitialChargeFromK": True}





These keywords respectively cause the K or L matrix to be loaded from file(s)
Kmatrix.i**.p*****, and the initial charge density to be constructed from
this matrix. In all subsequent calculations, the K or L matrix will be written
at the end of the calculation and used as the initial guess for the subsequent
ionic step.
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Equation of state

The following code computes the equation of state of diamond by doing single
point calculations on a uniform grid of the a lattice parameter. It then
interpolates the equation of state and uses matplotlib to generate a plot.

import scipy as sp
from ase.build import bulk
from ase.io.trajectory import Trajectory
from ase.calculators.conquest import Conquest


# Construct a unit cell
diamond = bulk('C', 'diamond', a=3.6, cubic=True)

basis = {'C': {"basis_size": 'minimal',
               "gen_basis": True}}

calc = Conquest(grid_cutoff = 50,
                xc = "PBE",
                basis = basis,
                kpts = [4,4,4])

diamond.set_calculator(calc)

cell = diamond.get_cell()
traj = Trajectory('diamond.traj', 'w') # save all results to trajectory

for x in sp.linspace(0.95, 1.05, 5):   # grid for equation of state
  diamond.set_cell(cell*x, scale_atoms=True)
  diamond.get_potential_energy()
  traj.write(diamond)

from ase.io import read
from ase.eos import EquationOfState

configs = read('diamond.traj@0:5')
volumes = [diamond.get_volume() for diamond in configs]
energies = [diamond.get_potential_energy() for diamond in configs]
eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()

import matplotlib
eos.plot('diamond-eos.pdf')    # Plot the equation of state
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External tools


Post-processing for charge density, band density, DOS, STM

The utility PostProcessCQ allows users to post-process the output
of a CONQUEST calculation, to produce the charge density, band
densities, DOS and STM images in useful forms.  It is described fully here.



Molecular dynamics analysis

Several scripts that may be helpful with postprocessing molecular dynamics are
included with CONQUEST. The can be found in the tools directory, and the
executables are plot_stats.py, md_analysis.py and heat_flux.py. They
have the following dependencies:



	Python 3


	Scipy/Numpy


	Matplotlib







If Python 3 is installed the modules can be added easily using pip3 install
scipy etc.

These scripts should be run in the calculation directory, and will automatically
parse the necessary files, namely Conquest_input, input.log,
md.stats and md.frames assuming they have the default names. They will
also read the CONQUEST input flags to determine, for example, what ensemble is
used, and process the results accordingly.
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Plotting statistics

usage: plot_stats.py [-h] [-c] [-d DIRS [DIRS ...]]
                    [--description DESC [DESC ...]] [--skip NSKIP]
                    [--stop NSTOP] [--equil NEQUIL] [--landscape]
                    [--mser MSER_VAR]

Plot statistics for a CONQUEST MD trajectory

optional arguments:
  -h, --help            show this help message and exit
  -c, --compare         Compare statistics of trajectories in directories
                        specified by -d (default: False)
  -d DIRS [DIRS ...], --dirs DIRS [DIRS ...]
                        Directories to compare (default: .)
  --description DESC [DESC ...]
                        Description of graph for legend (only if using
                        --compare) (default: )
  --skip NSKIP          Number of equilibration steps to skip (default: 0)
  --stop NSTOP          Number of last frame in analysis (default: -1)
  --equil NEQUIL        Number of equilibration steps (default: 0)
  --landscape           Generate plot with landscape orientation (default:
                        False)
  --mser MSER_VAR       Compute MSER for the given property (default: None)





Running plot_stats.py --skip 200 in your calculation will generate a plot
which should resemble the example below, skipping the first 200 steps. This
example is a molecular dynamics simulation of 1000 atoms of bulk silicon in the
NPT ensemble, at 300 K and 0.1 GPa.

[image: _images/stats.jpg]
The four plots are respectively the breakdown of energy contributions, the
conserved quantity, the temperature and the pressure, the last of which is only
included for NPT molecular dynamics. Several calculations in different
directories can be compared using plot_stats.py --compare -d dir1
dir2 --description "dir1 description" "dir2 description". The following
example compares the effect of changing the L tolerance in the above simulation.
Note that the contents of the description field will be in the legend of the
plot.

[image: _images/compare.jpg]
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MD analysis

usage: md_analysis.py [-h] [-d DIRS [DIRS ...]] [--skip NSKIP]
                      [--stride STRIDE] [--snap SNAP] [--stop NSTOP]
                      [--equil NEQUIL] [--vacf] [--msd] [--rdf] [--stress]
                      [--nbins NBINS] [--rdfwidth RDFWIDTH] [--rdfcut RDFCUT]
                      [--window WINDOW] [--fitstart FITSTART] [--dump]

Analyse a CONQUEST MD trajectory

optional arguments:
  -h, --help            show this help message and exit
  -d DIRS [DIRS ...], --dirs DIRS [DIRS ...]
                        Directories to compare (default: .)
  --skip NSKIP          Number of equilibration steps to skip (default: 0)
  --stride STRIDE       Only analyse every nth step of frames file (default:
                        1)
  --snap SNAP           Analyse Frame of a single snapshot (default: -1)
  --stop NSTOP          Number of last frame in analysis (default: -1)
  --equil NEQUIL        Number of equilibration steps (default: 0)
  --vacf                Plot velocity autocorrelation function (default:
                        False)
  --msd                 Plot mean squared deviation (default: False)
  --rdf                 Plot radial distribution function (default: False)
  --stress              Plot stress (default: False)
  --nbins NBINS         Number of histogram bins (default: 100)
  --rdfwidth RDFWIDTH   RDF histogram bin width (A) (default: 0.05)
  --rdfcut RDFCUT       Distance cutoff for RDF in Angstrom (default: 8.0)
  --window WINDOW       Window for autocorrelation functions in fs (default:
                        1000.0)
  --fitstart FITSTART   Start time for curve fit (default: -1.0)
  --dump                Dump secondary data used to generate plots (default:
                        False)





The script md_analysis.py script performs various analyses of the trajectory
by parsing the md.frames` file. So far, these include the radial distribution
function, the velocity autocorrelation function, the mean squared deviation, and
plotting the stress. For example, the command,

md_analysis.py --rdf --stride 20 --rdfcut 8.0 --nbins 100 --dump --skip 200 --stop 400

computes the radial distribution function of the simulation in the first example
from every 20th time step (every 10 fs in this case), stopping after 400 steps,
with a cutoff of 8.0 A, and the histogram is divided into 100 bins.

[image: _images/rdf.jpg]
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CONQUEST structure file analysis

usage: structure.py [-h] [-i INFILE] [--bonds] [--density] [--nbins NBINS]
                    [-c CUTOFF [CUTOFF ...]] [--printall]

Analyse a CONQUEST-formatted structure

optional arguments:
  -h, --help            show this help message and exit
  -i INFILE, --infile INFILE
                        CONQUEST format structure file (default:
                        coord_next.dat)
  --bonds               Compute average and minimum bond lengths (default:
                        False)
  --density             Compute density (default: False)
  --nbins NBINS         Number of histogram bins (default: 100)
  -c CUTOFF [CUTOFF ...], --cutoff CUTOFF [CUTOFF ...]
                        Bond length cutoff matrix (upper triangular part, in
                        rows (default: None)
  --printall            Print all bond lengths (default: False)





The script structure.py can be used to analyse a CONQUEST-formatted
structure file. This is useful to sanity-check the bond lengths or density,
since an unphysical structure is so often the cause of a crash. For example, the
bond lengths can be computed with

structure.py --bonds -c 2.0 3.0 3.0

where the -c flag specifies the bond cutoffs for the bonds 1-1, 1-2 and 2-2,
where 1 is species 1 as specified in Conquest_input and 2 is species 2. The
output will look something like this:

Mean bond lengths:
O-Si:   1.6535 +/-   0.0041 (24 bonds)
Minimum bond lengths:
O-Si:   1.6493
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Atomic Simulation Environment (ASE)

ASE [https://wiki.fysik.dtu.dk/ase] is a set of
Python tools for setting up, manipulating, running, visualizing and analyzing
atomistic simulations. ASE contains a CONQUEST interface, also
called Calculator so that it can be used to calculate energies, forces
and stresses as inputs to other calculations such as Phonon [https://wiki.fysik.dtu.dk/ase/ase/phonons.html#module-ase.phonons]
or NEB [https://wiki.fysik.dtu.dk/ase/ase/neb.html#module-ase.neb] that
are not implemented in CONQUEST. ASE is a versatil tool to manage CONQUEST
calculations without pain either:


	in a direct way where pre-processing, calculation and post-processing are managed on-the-fly by ASE,


	or in an indirect way where the calculation step is performed outside the workflow, ie. on a supercomputer.




The ASE repository containing the Conquest calculator can be
found here [https://gitlab.com/lionelalexandre/ase-Conquest/-/tree/master?ref_type=heads].
Detailed documentation on how to manage Conquest calculations
with ASE is available here.
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Error codes

Error codes generated by different CONQUEST routines will be collated
here, along with explanations of the root cause and suggested fixes.
This will form part of the full release, but is not implemented in the
pre-release.




            

          

      

      

    

  

    
      
          
            
  
Input tags

We have broken down the input tags based on the areas of the code
where they apply.  For each tag, a default is given.  Types of value
are specified as: integer;
real; boolean; or string (optA/optB are given for string options).


Areas


	General


	Atomic Specification


	Input-Output General Tags


	Atomic Coordinates


	Levels of Output


	Integration Grid


	Minimising Energy


	Charge Self-Consistency


	Density Matrix


	Diagonalisation


	Moving Atoms


	Molecular Dynamics


	Spin Polarisation


	DeltaSCF


	Constrained DFT (cDFT)


	vdW-DF


	DFT-D2


	XL-BOMD


	Advanced and obscure tags






General


	General.NumberOfSpecies (integer)
	Number of species in cell

default: none



	General.PseudopotentialType (string) siesta/hamann
	Type of pseudopotential (in practice, this defines how the local
part of the pseudopotential is handled)

default: hamann (read from ion file)



	General.NeutralAtom (boolean)
	Use neutral atom potential or not (removes need for Ewald sum)

default: T



	General.FunctionalType (integer)
	Selects the exchange-correlation functional. If the native
CONQUEST XC implementation is used, there are three
parameterisations of the LDA available, as well as three variants
of the PBE GGA functional, with numbers given below.

default: read from ion file (same as pseudopotentials)



	Functional

	Keyword

	Ref





	LDA Perdew-Zunger, no SIC

	1

	[E1]



	LDA Goedecker-Teter-Hutter 96

	2

	[E2]



	LSDA Perdew-Wang 92 (default)

	3

	[E3]



	GGA Perdew-Burke-Ernzerhof 96 (PBE)

	101

	[E4]



	GGA PBE + Zhang-Yang 98 (revPBE)

	102

	[E5]



	GGA PBE + Hammer-Hansen-Norskov 99 (RPBE)

	103

	[E6]



	GGA WC

	104

	[E7]






At the moment, only LSDA Perdew-Wang 92 and the three GGA
Perdew-Burke-Ernzerhof functional variants can be used in spin polarised calculations.

Note that, if the code is compiled with LibXC, the full LibXC
set of functionals is available, selected with a negative six
digit number (-XXXCCC or -CCCXXX).



	General.EnergyUnits (string) Ha/Ry/eV
	Output only Chooses units for energy

default: Ha



	General.DistanceUnits (string) a0/bohr/A
	Output only Chooses units for distance (Bohr: a0/bohr or Ångströms: A

default: a0



	General.MemoryUnits (string) kB/MB/GB
	Output only Chooses units for memory use

default: MB



	General.PartitionMethod (string) File/Hilbert
	Chooses method for partitioning (read from file or use dynamic partitioner
based on Hilbert curve)

default: Hilbert

Options:


	Hilbert (default) — Automatic partitioning using Hilbert curves;
safe for initial use though optimum load balancing not
guaranteed


	File — Reads a file (NOT recommended)






	General.LoadBalance (string) partitions/atoms
	Applies to Hilbert above; chooses whether to distribute atoms or partitions
evenly between processors (you are strongly recommended to use atoms)

default: atoms



	General.ManyProcessors (boolean)
	Applies to Hilbert above; chooses method for parallelising Hilbert curve work;
“many” processors here probably means more than two

default: T



	General.MaxAtomsPartition (integer)
	Applies to Hilbert above; specifies maximum number of atoms
allowed in a partition; triggers extra level of recursion in
partitioner

default: 34



	General.NPartitions[X/Y/Z] (integer)
	Allows the user to specify the number of partitions in x, y and z
directions

default: 0 (i.e. use Hilbert partitioning, above)



	General.NewRun (boolean)
	Switches between new run and restart (N.B. restart has not been implemented yet)

default: T



	General.LoadDM (boolean)
	Specifies whether to load a previous density matrix (K or L depending on
whether diagonalisation or linear scaling are selected) from files

default: F



	General.LoadRho (boolean)
	Specifies whether to load a previous charge density from files

default: F



	General.NetCharge (real)
	Specifies net charge on unit cell; implemented rather crudely with
a neutralising background charge assumed. Note that a positive
value indicates excess electrons

default: 0.0



	General.EwaldAccuracy (real)
	Accuracy for ewald sum (in Ha/atom)

default: \(10^{-10}\)



	General.TimeThreshold (real)
	Minimum time for a timer to be printed (in seconds)

default: \(0.001\)



	General.vdWDFT (boolean)
	Selects vdW DF

default: F



	General.DFT_D2 (boolean)
	Selects DFT-D2

default: F



	General.MaxTime (real)
	Maximum wall time for calculation in seconds. Conquest will exit
gracefully on completion of an ionic relaxation/MD step

default: 0.0



	General.RNGSeed (integer)
	Seed for the random number generator. If less than 0, a random seed will be
generated, otherwise the specified seed is used, and the same
sequence of random numbers will be generated every time. Useful for
reproducing MD runs.

default: -1
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Atomic Specification


	ChemicalSpeciesLabel (block)
	Lists all atomic species used in the calculation. Format:


1 atomic_mass1 element_label_1

2 atomic_mass2 element_label_2

...

n atomic_mass_n_ element_label_n



(Note that the block must end with %endblock ChemicalSpeciesLabel.)
1-–n are integer numbers used in the coordinate file to identify
atomic species, as discussed in the Coordinates
section.  The atomic masses are only used for dynamics.  The
element labels should have a corresponding ion file
element_label_x.ion and may have an accompanying atom
specification block.

There can then be up to n atom specification blocks whose names
should be element_label_x.  When using primitive PAOs for support functions many of these are
read from the ion file.



	Atom.MultisiteRange (real)
	Range for multi-site support functions (the PAOs on all atoms
within this range will be included in the support function)

default: 0.0



	Atom.LFDRange (real)
	Range for local filter diagonalisation (the Hamiltonian and
overlap matrix elements from all atoms within this range will be
included in the cluster diagonalisation)

default: 0.0
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Input-Output General Tags


	IO.Title (string)
	Title for calculation

default: none



	IO.Partitions (string)
	Name for file containing distribution of partitions over processors
(generated by accompanying utilities)

default: make_prt.dat



	IO.WriteOutToFile (boolean)
	Specifies whether the main output information is written to standard output
or to a file

default: T



	IO.OutputFile (string)
	Name for the main output file

default: Conquest_out



	IO.DumpL (boolean)
	Whether to write the auxiliary matrices L to file at each self-consistent steps

default: T



	IO.DumpChargeDensity (boolean)
	Whether to write out the charge
density.  If T, then the charge density will be written out at
self-consistency; additionally, if IO.Iprint_SC is larger than
2, the charge density will be written out at every step of the SCF
cycle.  The resulting chden.nnn files can be converted to cube
format files using the post-processing utility.

default: F



	IO.Dump[Har|XC|PS|ES|Tot]Pot (boolean)
	Flags to allow dumping of different local potentials (Hartree, XC, pseudopotential, electrostatic, total).
Only active when a static self-consistent run is chosen. (NB each flag must be set to true for output,
such as IO.DumpHarPot T etc.)  Files can be converted to cube format as for charge density by setting
Process.ChargeStub appropriately (e.g. locpsHar with other files replacing Har
with XC, PS, ES and Tot)

default: F



	IO.TimingOn (boolean)
	Whether time information will be measured and written to output

default: F



	IO.TimeAllProcessors (boolean)
	Specifies whether time information will be written for all processors or just
for the input/output process (the default)

default: F



	IO.WriteTimeFile (boolean)
	Whether time files are written or not. This flag will be ignored if
IO.TimeAllProcessors is true, in which case time files are always written.

default: T



	IO.TimeFileRoot (string)
	Root to be used in the time files, with an extension indicating the processor
number, e.g. .001

default: time
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Atomic Coordinates


	IO.Coordinates (string)
	Specifies the file with atomic coordinates. See Coordinates
for details on the file format

default: none



	IO.FractionalAtomicCoords (boolean)
	Specifies whether fractional or absolute (Cartesian) coordinates are used
in the coordinate file

default: T



	IO.PdbIn (boolean)
	Switches between the   coordinate file format (F) and PDB format (T)

default: F





Go to top.



Levels of Output

The overall level of output is controlled by IO.Iprint and can be
fine-tuned with the other IO.Iprint keywords. These are by default set
to the value of IO.Iprint, but that will be over-ridden if setting them
explicitly. For instance, IO.Iprint could be set to 0, but IO.Iprint_MD
could be set to 2 giving more extensive information about atomic
movements but little other information.


	IO.Iprint (integer)
	The amount of information printed out to the output file
The larger the value the more detailed the output is.


0 Basic information about the system and the run

1 Overview of the SCF cycle and atom movement

2 More detail on SCF cycle, atom movement

3 Extensive detail on SCF cycle, atom movement

4 Details of energy breakdown

5 Excessive output, only for developers debugging



default: 0



	IO.Iprint_init (integer)
	The initialisation process



	IO.Iprint_mat (integer)
	Matrix operations



	IO.Iprint_ops (integer)
	Creation of operators H and S



	IO.Iprint_DM (integer)
	Density matrix



	IO.Iprint_SC (integer)
	Self-consistency



	IO.Iprint_minE (integer)
	Energy minimisation



	IO.Iprint_MD (integer)
	Molecular dynamics



	IO.Iprint_index (integer)
	Indexing routines



	IO.Iprint_gen (integer)
	General (not covered by other areas)



	IO.Iprint_pseudo (integer)
	Pseudopotentials



	IO.Iprint_basis (integer)
	Basis set



	IO.Iprint_intgn (integer)
	Integration on the grid (not used at present)



	IO.Iprint_time (integer)
	Timing information
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Integration Grid


	Grid.GridCutoff (real)
	An energy that defines the spacing of the integration grid (though for a blip calculation
must be at least twice as fine as blip grid, and will be adjusted). Note that
the value chosen will automatically be forced to be a factor of 3, 4 and 5 only
(to fit with default FFT routines)

Default: 50 Ha.
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Minimising Energy


	minE.VaryBasis (boolean)
	Chooses whether or not basis coefficients should be varied to minimise the
total energy

default: F



	minE.SelfConsistent (boolean)
	Determines whether or not self-consistency cycles are imposed between charge
density and potential

default: T



	minE.MixedLSelfConsistent (boolean)
	Determines whether or not to perform self-consistent cycle at the same time
as energy minimisation with respect to L

default: F



	minE.EnergyTolerance (real)
	Fractional tolerance for energy on minimisation of support function coefficients

default: 1\(\times\)10\(^{-5}\)



	minE.LTolerance (real)
	Tolerance on residual in O(N) minimisation

default: 1\(\times\)10\(^{-7}\)



	minE.SCTolerance (real)
	Tolerance on residual in self-consistency

default: 1\(\times\)10\(^{-6}\)



	minE.SupportVariations (integer)
	Maximum number of support-function iterations

default: 20



	minE.PreconditionBlips(boolean)
	Should blip variation be pre-conditioned? Pre-conditioning is (at present)
more memory-intensive than it should be, but is efficient

default: F



	minE.GlobalTolerance (boolean)
	Are the convergence criteria applied to minimisation summed over the whole
system, or per atom?

default: T
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Charge Self-Consistency


	SC.LinearMixingSC (boolean)
	Should Pulay mixing be used? It is recommended that this is always used

default: T



	SC.LinearMixingFactor (real)
	Amount of output charge density which is mixed into new charge

default: 0.5



	SC.LinearMixingFactor_SpinDown (real)
	Amount of output charge density which is mixed into new charge for spin down channel.

default: value of SC.LinearMixingFactor



	SC.LinearMixingEnd (real)
	Tolerance for end of Pulay mixing

default: self-consistency tolerance



	SC.LateStageReset (integer)
	If using GR-Pulay, how often is residual calculated fully (rather than interpolated) ?

default: 5



	SC.MaxIters (integer)
	Maximum self-consistency iterations

default: 50



	SC.MaxEarly (integer)
	Maximum early-stage iterations

default: 3



	SC.MaxPulay (integer)
	Number of iterations stored and mixed during Pulay mixing

default: 5



	SC.ReadAtomicDensityFile (string)
	Filename for radial tables of atomic density (rarely used: normally generated from PAOs)

default:



	SC.AtomicDensityFlag (string)
	values: pao/read

Flag determining how atomic densities should be found

default: pao



	SC.KerkerPreCondition (boolean)
	Flag determining if Kerker precondition is to be used.

default: F



	SC.KerkerFactor (real)
	Wave-vector magnitude used in Kerker preconditioning, it is \(q_0\) from
the factor \(q^2 / \left(q^2 + q_0^2\right)\)

default: 0.1



	SC.WaveDependentMetric (boolean)
	Flag determining if wave-dependent metric is to be used in Pulay mixing.

default: F



	SC.MetricFactor (real)
	Wave-vector magnitude used by wave-dependent metric method, it is \(q_1\)
from the factor \(\left(q^2 + q_1^2\right) / q^2\).

default: 0.1



	SC.MakeInitialChargeFromK (boolean)
	Flag determining whether initial charge is made from the density matrix

default: T
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Density Matrix


	DM.SolutionMethod (string)
	values: ordern/diagon

Selects the method for finding the ground state density matrix. This can currently
be either diagonalisation (diagon: minimising the energy with respect to the
density matrix elements) or an O(N) method (ordern a combination of the
techniques of Li et al. [E8] and Palser and Manolopoulos [E9].)

default: diagon



	DM.L_range (real)
	Cutoff applied to L matrix (total energy will converge with increasing range;
suggested minimum for O(N) calculations is twice largest support function range;
see Linear Scaling for more details)

default: 1.0



	DM.LVariations (integer)
	Maximum number of variations performed in search for ground-state density matrix

default: 50



	DM.MaxPulay (integer)
	Maximum number of iterations stored for Pulay minimisation

default: 5



	DM.MinPulayStepSize (real)
	Minimum allowed step size for Pulay minimisation in Energy minimisation stage
of the calculation. Note that the actual step size is calculated by  automatically,
but will be constrained within the range defined by DM.MinPulayStepSize
and DM.MaxPulayStepSize. Not to be confused with the Pulay mixing step
size for charge self-consistency.

default: 0.001



	DM.MaxPulayStepSize (real)
	Maximum allowed step size for Pulay minimisation in Energy minimisation stage
of the calculation. Not to be confused with the Pulay mixing step size
for charge self-consistency.

default: 0.1



	DM.LinTol (real)
	Tolerance on linearity required before switching to Pulay minimisation

default: 0.1



	DM.InvSTolerance (real)
	Tolerance on iterative minimisation to find S\(^{-1}\). If
\(\Omega = \mathrm{Tr}[(I-TS)^2]/N_{\mathrm{orbitals}}\) is above this,
identity will be used

default: 0.01



	DM.InvSMaxSteps (integer)
	Sets the maximum number of iterations for finding S\(^{-1}\)

default: 100



	DM.InvSDeltaOmegaTolerance (real)
	Tolerance which determines when the iterative minimisation to find S\(^{-1}\)
should finish. \(\delta\Omega_n = N_{\mathrm{orbitals}} (\Omega_n - \Omega_{n-1})\),
where \(\Omega\) is defined in description for DM.InvSTolerance. This parameter
differs from DM.InvSTolerance in that the iterative S\(^{-1}\) finder
will end iteration when \(\delta\Omega\) is less than or equal to
DM.InvSDeltaOmegaTolerance, while DM.InvSTolerance determines whether
to reset S\(^{-1}\) to identity (i.e. whether a satisfactory S\(^{-1}\)
has been found) based on the final \(\Omega\) produced from the iterative loop

default: 0.0001



	DM.ConstantMu (boolean)
	
	Switches between fixed Fermi level (T) and fixed number of electrons (F). You
	are strongly recommended to leave at default





default: F



	DM.mu (real)
	Value of Fermi level for fixed Fermi level calculations

default: 0.0
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Diagonalisation


	Diag.NumKpts (integer)
	Number of all k-points. No symmetry is applied.

default:



	Diag.Kpoints (block)
	Lists fractional coordinates and weights of all k-points: x_fract y_fract z_fract weight
Generates the Monkhorst-Pack mesh, an equally spaced mesh of k-points.

default:



	Diag.MPMesh (boolean)
	Switches on/off the Monkhorst-Pack mesh. Note: if this keyword is present in
the input file, the keyword Diag.NumKpts and the block Kpoints will
be ignored.

default:



	Diag.MPMesh[X/Y/Z] (integer)
	Specifies the number n of k-points along the x(y,z) axis.

default: 1



	Diag.GammaCentred (boolean)
	Selects Monkhorst-Pack mesh centred on the Gamma point

default: F



	Diag.PaddingHmatrix (boolean)
	Setting this flag allows the Hamiltonian and overlap matrices to be
made larger than their physical size, so that ScaLAPACK block sizes can
be set to any value (which can significantly improve efficiency).  At present, the
automatic setting of block sizes does not use this functionality; if
desired, block sizes must be set manually (note that the optimum block
size is likely to be different on different machines).  (Available from v1.2)

default: T



	Diag.BlockSizeR (integer)
	Block size for rows (See next).

default: Determined automatically



	Diag.BlockSizeC (integer)
	R … rows, C … columns
These are ScaLAPACK parameters, and can be set heuristically by the code.
Blocks are sub-divisions of matrices, used to divide up the matrices between processors.
The block sizes need to be factors of the square matrix size
(i.e. \(\sum_{\mathrm{atoms}}\mathrm{NSF(atom)}\)). A value of 64 is considered
optimal by the ScaLAPACK user’s guide.

If Diag.PaddingHmatrix is set to true then the block sizes can take any value,
but BlockSizeR and BlockSizeC must be the same.

default: Determined automatically



	Diag.MPShift[X/Y/Z] (real)
	Specifies the shift s of k-points along the x(y,z) axis, in fractional
coordinates.

default: 0.0



	Diag.SmearingType (integer)
	Specifies the type of smearing used



	0

	Fermi-Dirac



	1

	Methfessel-Paxton






default: 0



	Diag.kT (real)
	Smearing temperature

default: 0.001



	Diag.MPOrder (integer)
	Order of Bessel function approximation to delta-function used in Methfessel-Paxton smearing

default: 0



	Diag.GaussianHeight (real)
	
	The height of Gaussian function used to determine the width of Methfessel-Paxton
	approximation to delta-function (see Electronic occupation smearing)





default: 0.1



	Diag.EfStepFiness (real)
	Parameter controlling the finness of the Fermi energy search step used in
Methfessel-Paxton smearing method (see Electronic occupation smearing)

default: 1.0



	Diag.NElecLess (Real)
	The number of electrons to subtract from the total number of electrons in each
spin channel, which gives the starting point for searching the lower bound for
Fermi energy. Used in Methfessel-Paxton smearing method
(see Electronic occupation smearing)

default: 10.0



	Diag.KProcGroups (integer)
	Number of k-point processor groups for k-point parallelisation
(see K-point parallelization)

default: 1



	Diag.ProcRows (integer)
	Number of rows in the processor grid for SCALAPACK within each k-point processor
group

default: Determined automatically



	Diag.ProcCols (integer)
	Number of columns in the processor grid for SCALAPACK within each k-point
processor group.  The rows and columns need to multiply
together to be less than or equal to the number of processors. If ProcRows
\(\times\) ProcCols \(<\) number of processors, some processors will be left idle.

default: Determined automatically
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Moving Atoms


	AtomMove.TypeOfRun (string)
	values: static/cg/sqnm/lbfgs/md

Options:

static — Single point calculation

cg — Structure optimisation by conjugate gradients

sqnm - Stabilised Quasi-Newton Minimisation (recommended approach)

lbfgs — Structure optimisation by LBFGS (Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm)

md — Velocity Verlet algorithm

default: static



	AtomMove.QuenchMD (boolean)
	Selects Quenched MD for structure relaxation (with AtomMove.TypeOfRun md)

default: F



	AtomMove.FIRE (boolean)
	Selects FIRE method for structure relaxation (with AtomMove.TypeOfRun md)

default: F



	AtomMove.NumSteps (integer)
	Maximum number of steps for a structure optimisation or molecular dynamics run

default: 100



	AtomMove.MaxForceTol (real)
	The structure optimisation will stop when the maximum force component is less
than MD.MaxForceTol

default: 0.0005 Ha/bohr



	AtomMove.MaxSQNMStep (real)
	The maximum distance any atom can move during SQNM (in Bohr).  Applies to the
part of the search direction not in the SQNM subspace (scaled directly by a step
size, which is limited to ensure this value is not exceeded).

default: 0.2 bohr



	AtomMove.Timestep (real)
	Time step for molecular dynamics

default: 0.5



	AtomMove.IonTemperature (real)
	Initial temperature for molecular dynamics

default: 300 K for MD, 0 for Quench MD or FIRE



	AtomMove.ReadVelocity (boolean)
	Read velocity from file md.checkpoint (when AtomMove.RestartRun T)


or  velocity.dat  (when AtomMove.RestartRun F, very rare)




default: F (when AtomMove.RestartRun F)


or T (when AtomMove.RestartRun T)






	AtomMove.AppendCoords (boolean)
	Chooses whether to append coordinates to UpdatedAtoms.dat during atomic
movement (T) or to overwrite (F)

default: T



	AtomMove.OutputFreq (integer)
	Frequency of output of information. Not properly implemented

default: 50



	AtomMove.WriteXSF (boolean)
	Write atomic coordinates to trajectory.xsf for AtomMove.TypeOfRun = md or cg,
every AtomMove.XsfFreq steps

default: T



	AtomMove.XsfFreq (integer)
	Frequency of output of atomic coordinates to trajectory.xsf

default: same as AtomMove.OutputFreq



	AtomMove.WriteXYZ (boolean)
	Write atomic coordinates to trajectory.xyz for AtomMove.TypeOfRun = md,
every AtomMove.XyzFreq steps

default: T



	AtomMove.XyzFreq (integer)
	Frequency of output of atomic coordinates to trajectory.xyz

default: same as AtomMove.OutputFreq



	AtomMove.TestForces (boolean)
	Flag for testing forces with comparison of analytic and numerical calculations.
Can produce large amounts of output

default: F



	AtomMove.TestAllForces (boolean)
	Switch to test all force contributions or not

default: F



	AtomMove.CalcStress (boolean)
	Toggle calculation of the stress tensor. Switching off can improve performace.

default: T



	AtomMove.FullStress (boolean)
	Toggle calculation of the off-diagonal elements of the stress tensor, which
can be expensive, but is required for calculating certain properties.

default: F



	AtomMove.AtomicStress (boolean)
	Toggle calculation of atomic contributions to the stress tensor. Used in
heat flux/thermal conductivity calculations. Significantly increases
memory demands.

default: F



	AtomMove.OptCell (boolean)
	Turns on conjugate gradient relaxation of the simulation box dimensions a, b
and c. Note that AtomMove.TypeOfRun must also be set to cg (except for method 2 below
where sqnm will result in SQNM for atomic positions and CG for cell vectors).

default: F



	AtomMove.OptCellMethod (integer)
	Cell optimisation method.

default: 1

Options:


	Fixed fractional coordinates (only cell vectors)


	Alternating atomic position and cell vector optimisation (recommended for simultaneous optimisation)


	Simultaneous cell and atomic conjugate gradients relaxation; caution recommended (can be unstable)






	AtomMove.EnthalpyTolerance (real)
	Enthalpy tolerance for cell optimisation

default: 1\(\times\)10\(^{-5}\) Ha



	AtomMove.StressTolerance (real)
	Stress tolerance for cell optimisation

default: 0.1 GPa



	AtomMove.TargetPressure (real)
	External pressure for NPT molecular dynamics and cell optimisation

default: 0.0 GPa



	AtomMove.OptCell.Constraint (string)
	Applies a constraint to the relaxation.

none: Unconstrained relaxation.

Fixing a single cell dimension:

a: Fix the x-dimension of the simulation box

b: Fix the y-dimension of the simulation box

c: Fix the z-dimension of the simulation box

Fixing multiple cell dimensions:

any combination of the above separated by a space character. e.g: “a b” fixes
both the x and y dimensions of the simulation box

Fixing Ratios:

Any combination of a, b or c separated by a “/” character. e.g “c/a” fixes
the initial ratio of the z-dimension to the x-direction.

Global scaling factor:

volume: minimize the total energy by scaling each simulation box dimension by
the same global scaling factor. Search directions are set by the mean stress.



	AtomMove.TestSpecificForce (integer)
	Label for which force contribution to test. Note that for PAOs non-local Pulay
and Hellman-Feynman forces are found together as part of the HF calculation;
\(\phi\) Pulay refers to changes in \(\phi(\mathbf{r})\) when atoms move,
while S Pulay refers to changes in S when atoms move. Options:

1 Total
2 Total Hellman-Feynman
3 Total Pulay
4 Non-SC Correction
5 Non-local \(\phi\) Pulay
6 KE \(\phi\) Pulay
7 Local \(\phi\) Pulay
8 S Pulay

default: 1



	AtomMove.TestForceDirection (integer)
	Direction in which atom will be moved (1=x; 2=y; 3=z)

default: 1



	AtomMove.TestForceAtom (integer)
	Atom to move

default: 1



	AtomMove.TestForceDelta (real)
	Distance atom will be moved for numerical evaluation of force

default: 10\(^{-5}\) bohr



	AtomMove.RestartRun (boolean)
	Restart a MD run. Note that this will set General.LoadL T,
AtomMove.MakeInitialChargeFromSC T and XL.LoadX T if using the
extended Lagrangian. The atomic coordinates will be read from
md.positions and the velocities and extended system variables from
md.checkpoint.

default: F



	AtomMove.ReuseDM (boolean)
	Selects the use of last-step L-matrix (ordern) or K-matrix(diagon)
during MD or structure relaxation

default: T



	AtomMove.ReuseSFcoeff (boolean)
	Selects the use of last-step PAO coefficients of multi-site support functions
during MD or structure relaxation

default: T



	AtomMove.ReuseInvS (boolean)
	Selects the use of T-matrix in MD run  (rare)

default: F



	AtomMove.SkipEarlyDM (boolean)
	Selects the skip of earlyDM calculation in MD run

default: F



	AtomMove.McWeenyFreq (integer)
	McWeeny step is applied every N steps (with “AtomMove.ReuseDM T”)

default:



	AtomMove.ExtendedLagrangian (boolean)
	Selects XL-BOMD (with “AtomMove.ReuseDM T”)

default: F



	AtomMove.FixCentreOfMass (boolean)
	Remove the centre of mass velocity at every time step

default: T





Go to top.



Molecular Dynamics


	MD.Ensemble (string)
	values: nve/nvt/npt/nph

The molecular dynamics ensemble

default: nve



	MD.Thermostat (string)
	values: none/nhc/berendsen/svr

Thermostat type


	none
	No thermostat (used for calculating temperature only)



	berendsen
	Berendsen weak coupling thermostat



	svr
	Stochastic velocity rescaling





default: none



	MD.Barostat (string)
	values: none/berendsen/iso-mttk/ortho-mttk/mttk

Barostat type. The following are the only valid thermostat/barostat
combinations for the NPT ensemble: berendsen/ berendsen,
nhc/ pr, svr/ pr


	none
	No barostat (used for calculating pressure only)



	berendsen
	Berendsen weak coupling barostat



	pr
	Parrinello-Rahman (extended system) barostat





default: none



	MD.tauT (real)
	Coupling time constant for thermostat. Required for Berendsen thermostat, or
if MD.CalculateXLMass = T. Note that this number means different things
for the Berendsen and NHC thermostats.

default: 1.0



	MD.TDrag (real)
	Add a drag coefficient to the thermostat. The thermostat velocities are
reduced by a factor \(1 - \tau/D_T\) every step.

default: 0.0



	MD.nNHC (integer)
	Number of Nosé-Hoover thermostats in chain

default: 5



	MD.CellNHC (boolean)
	Use a separate Nosé-Hoover chain for thermostating the unit cell (NPT only)

default: T



	MD.NHCMass (blocks)
	\(<n1> <n2> <n3> \ldots\)
Masses of NHC heat baths

default: 1 1 1 1 1



	MD.CellNHCMass (block)
	\(<n1> <n2> <n3> \ldots\)
Masses of NHC heat baths for unit cell

default: 1 1 1 1 1



	MD.BulkModulusEst (real)
	Bulk modulus estimate for system. Only necessary for Berendsen weak pressure
coupling (MD.Barostat = berendsen or MD.BerendsenEquil > 0)

default: 100



	MD.tauP (real)
	Coupling time constant for barostat. Required for Berendsen barostat, or if
MD.CalculateXLMass = T. Note that this number means different things for the
Berendsen and Parrinello-Rahman barostats.

default: 10.0 (Berendsen) or 100.0 (MTTK)



	MD.PDrag (real)
	Add a drag coefficient to the barostat. The barostat velocities are
reduced by a factor \(1 - \tau/D_P\) every step. This is useful
when the lattice parameters are varying rapidly.

default: 0.0



	MD.BoxMass (real)
	Mass of box for extended system formalism (MTTK barostats)

default: 1



	MD.CalculateXLMass (boolean)
	Calculate the mass of the extended system components (thermostats, barostat)
using the MTTK formulae.

default: T



	MD.nYoshida (integer)
	values: 1/3/5/7/15/25/125/625

Order of Yoshida-Suzuki integration

default: 1



	MD.nMTS (integer)
	Number of time steps in inner loop of MTS scheme

default: 1



	MD.BerendsenEquil (integer)
	Equilibrate the system for \(n\) steps using Berendsen weak coupling

default: 0



	MD.TDEP (boolean)
	Dump data in a format readable by the Temperature Dependent Effective
Potential (TDEP) code.

default: F



	MD.ThermoDebug (boolean)
	Print detailed information about thermostat and extended variables in thermostat.dat

default: F



	MD.BaroDebug (boolean)
	Print detailed information about barostat and extended variables in barostat.dat

default: F



	MD.VariableTemperature (boolean)
	Simulation with a variable temperature if .True.

default: F



	MD.VariableTemperatureMethod (string)
	Type of temperature profile. Only linear temperature profile is implemented.

default: linear



	MD.VariableTemperatureRate (real)
	Change rate for the temperature. In units of K/fs.
If positive, heating. If negative, cooling.

default: 0.0



	MD.InitialTemperature(real)
	Initial temperature.

default: same as AtomMove.IonTemperature



	MD.FinalTemperature(real)
	Final temperature.

default: same as AtomMove.IonTemperature
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Spin Polarisation


	Spin.SpinPolarised (boolean)
	Determines if the calculation is spin polarised (collinear) or non-spin polarised.

default: F



	Spin.FixSpin (boolean)
	Determines if spin populations are to be fixed. Only read if Spin.FixPolarised is set.

default: F



	Spin.NeUP (real)
	Total number of electrons in spin up channel at start of calculation.

default: 0.0



	Spin.NeDN (real)
	Total number of electrons in spin down channel at start of calculation.

default: 0.0
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DeltaSCF


	flag_DeltaSCF (boolean)
	Selects delta SCF calculation

default:



	DeltaSCF.SourceLevel (integer)
	Eigenstate number to remove electron from (source)

default:



	DeltaSCF.TargetLevel (integer)
	Eigenstate number to promote electron to (target)

default:



	DeltaSCF.SourceChannel (integer)
	Spin channel for electron source

default:



	DeltaSCF.TargetChannel (integer)
	Spin channel for electron target

default:



	DeltaSCF.SourceNFold (integer)
	Allows selection of more than one level for excitation source (N-fold)

default:



	DeltaSCF.TargetNFold (integer)
	Multiplicity of target (N-fold)

default:



	DeltaSCF.LocalExcitation (boolean)
	Select an excitation localised on a group of atoms

default:



	DeltaSCF.HOMOLimit (integer)
	How many states down from HOMO to search for localised excitation

default:



	DeltaSCF.LUMOLimit (integer)
	How many states up from LUMO to search for localised excitation

default:



	DeltaSCF.HOMOThresh (real)
	(please fill in)

default:



	DeltaSCF.LUMOThresh (real)
	Threshold for identifying localised excitation (sum over square moduli of coefficients)

default:
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Constrained DFT (cDFT)


	cDFT.Perform_cDFT (boolean)
	Selects cDFT operation

default:



	cDFT.Type (integer)
	values: 1 or 2

Selects constraint to be for absolute charge on groups (1) or difference between two groups (2)

default:



	cDFT.MaxIterations (integer)
	Maximum iterations permitted

default:



	cDFT.Tolerance (real)
	Tolerance on charge

default:



	cDFT.NumberAtomGroups (integer)
	Number of groups of atoms

default:



	cDFT.AtomGroups (block)
	Block with each line specifying: Number of atoms, target charge, label for
block. For each line, there should be a corresponding block with the appropriate
label; the block consists of a list of atom numbers for the atoms in the group
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vdW-DF


	vdWDFT.LDAFunctionalType (string)
	Selects LDA functional to use with vdW-DF

default:





Go to top.



DFT-D2


	DFT-D2_range (real)
	DFT-D2 cutoff range (bohr)

default:
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XL-BOMD


	XL.Kappa (real)
	Value of kappa

default: 2.0



	XL.PropagateX (boolean)
	Selects the propagation of LS in XL-BOMD

default: T



	XL.PropagateL (boolean)
	Selects the propagation of L matrix in XL-BOMD (inappropriate)

default: F



	XL.Dissipation (boolean)
	Selects the addition of dissipative force

default:



	XL.MaxDissipation (integer)
	Order of dissipative force term

default: 5



	XL.Integrator (string)
	Selects the Verlet method or velocity Verlet method

default: velocityVerlet



	XL.ResetFreq (integer)
	Frequency to reset the propagation of X matrix in XL-BOMD

default: 0 (no reset)
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Advanced and obscure tags


General


	General.LoadInvS (boolean)
	Selects loading of inverse S matrix from previous step (not
recommended)

default: F



	General.NeutralAtomProjector (boolean)
	Selects projector expansion of neutral atom potential; still in
development.  Only for expert use.  (Allows specification of
maximum l value for projectors and list of number of projectors
for each l value.)

default: F



	General.PAOFromFiles (boolean)
	Allows you to give explicit file name for .ion files in atom block

default: F



	General.MaxTempMatrices (integer)
	Allows user to increase number of temporary matrices; sometimes
required for wavefunction output.

default: 100



	General.EwaldAccuracy (real)
	Accuracy required for Ewald sum

default:1\(\times\)10\(^{-10}\)



	General.CheckDFT (boolean)
	Calculates DFT energy using output density

default: F



	General.AverageAtomicDiameter (real)
	Related to space-filling

default: 5.0



	General.GapThreshold (real)
	Related to space-filling

default: 2.0*(largest support radius)



	General.only_Dispersion (boolean)
	Selects only DFT_D2 calculation (no electronic structure etc)



	General.MixXCGGAInOut (real)
	For non-SCF calculations only, chooses how to mix the proportions of
GGA XC stress contribution (from the change of the electron density
gradient) found using input (0.0 gives pure input) and output (1.0
gives pure output) densities.  Note that this is an approximation but
varying the value significantly away from 0.5 will give inconsistency
between stress and energy.

default: 0.5
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Atomic Specification


	Atom.ValenceCharge (real)
	Valence charge of species (e.g. 4 for carbon, 6 for oxygen)

default: read from ion file



	Atom.NumberOfSupports (integer)
	Number of support functions per atom for a species. Don’t confuse
support functions and PAOs ! Support functions can be expanded in
a basis set of PAOs or blips

default: number of PAOs read from ion file



	Atom.SupportFunctionRange (real)
	Confinement radius for the support functions for a given species

default: maximal PAO radius read from ion file



	Atom.SupportGridSpacing (real)
	The spacing of the blip grid (if using). Equivalent (under certain
circumstances) to a maximum g-vector of
\(\pi\)/SupportGridSpacing
plane wave cutoff as region radius and L matrix radius go to infinity. Not used for PAO
calculations.  N.B. Grid.GridCutoff will be reset to at least half
SupportGridSpacing if too small.

default: none



	Atom.NonLocalFactor  (real)
	This is an adjustment factor: the Hamiltonian range is (strictly)
2 \(\times\) (support function radius + non-local projector
radius). However, generally without affecting the results, the
Hamiltonian range can be set to 2  \(\times\) (support function
radius + non_local_factor\(\times\) non-local projector radius). If you
have non_local_factor = 1.0 then you get the full range, if 0.0
then the same range as the S matrix.

default: 0.0



	Atom.InvSRange  (real)
	Range of inverse S matrix (though actual matrix range is twice
this for consistency with S matrix range).

default: support function range



	Atom.SpinNeUp (real)
	Specify the population of spin-up electrons for setting initial
spin state of atomic densities

default: 0.0



	Atom.SpinNeDn (real)
	Specify the population of spin-down electrons for setting initial
spin state of atomic densities

default: 0.0
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I/O General


	IO.Partitions (string)
	Name for file containing distribution of partitions over processors
(generated by accompanying utilities)

default: make_prt.dat



	IO.TimingOn (boolean)
	Whether time information will be measured and written to output

default: F



	IO.TimeAllProcessors (boolean)
	Specifies whether time information will be written for all processors or just
for the input/output process (the default)

default: F



	IO.WriteTimeFile (boolean)
	Whether time files are written or not. This flag will be ignored if
IO.TimeAllProcessors is true, in which case time files are always written.

default: T



	IO.TimeFileRoot (string)
	Root to be used in the time files, with an extension indicating the processor
number, e.g. .001

default: time
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I/O Atomic Coordinates


	IO.PdbAltLoc (string)
	In case of PDB files with multiple locations selects an alternate location.
Values: A, B, etc., as listed in the pdb file. Note that if the keyword is present
in the input file but no value is given, only the parts of the system without
any alternate location specification will be taken into account

default: none



	IO.PdbOut (boolean)
	Format of the output coordinate file. Writes a PDB file if set to T. In that
case, either the input must be in pdb format or a PDB “template” file needs to
be specified (keyword General.PdbTemplate)

default: F



	IO.PdbTemplate (string)
	A file used as a template for writing out coordinate files in the PDB format,
i.e., the output file will contain the same information as the template, only
the atomic coordinates will be overwritten. If the input file is in PDB format,
it will also be used as the template, although this can still be
overwritten with this keyword

default: coordinate file



	IO.AtomOutputThreshold (integer)
	Threshold below which atomic positions are output on
initialisation, and atomic forces are output at the end of a
static run.

default: 200
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Basis Set


	Basis.BasisSet (string)
	values: blips/PAOs

Selects the basis set in which to expand the support functions (localised orbitals).

Options:


	PAOs — Pseudo-atomic orbitals [E10]


	blips (default) — B-splines [E11]




default: PAOs



	Basis.LoadBlip (boolean)
	Load blip or PAO coefficients from file. If set to T, for blips the code will
look for a set of files containing blip coefficients, which is taken to be
blip_coeffs.nnn, where nnn is processor number (padded with zeroes);
for PAOs, the code will look for a single file which is supp_pao.dat
by default, but can be set with Basis.SupportPaoFile

default: F



	Basis.SupportPaoFile (string)
	Specifies filename for PAO coefficients

default: supp_pao.dat



	Basis.UsePulayForPAOs (boolean)
	Determines whether to use Pulay DIIS for minimisation of PAO basis coefficients

default: F



	Basis.PaoKspaceOlGridspace (real)
	Determines the reciprocal-space grid spacing for PAO integrals

default: 0.1



	Basis.PaoKspaceOlCutoff (real)
	Determines the cutoff for reciprocal-space grid spacing for PAO integrals

default: 1000.0



	Basis.PAOs_StoreAllAtomsInCell (boolean)
	Determines whether coefficients for all atoms in cell are stored on each
processor (improves speed but potentially memory expensive, particularly with
large systems) or only local atom coefficients (increases communication overhead)

default: T



	Basis.SymmetryBreaking (boolean)
	Determines whether symmetry-breaking assignment of PAOs to support functions
is allowed. In general, it is highly recommended that all atoms have sufficient
support functions to span the space of angular momenta used in PAOs
(i.e. \(2l+1\) support functions for each \(l\) channel used for PAOs);
reducing the number potentially results in symmetry breaking and unphysical behaviour

default: F



	Basis.PaoNormFlag (integer)
	Determines whether PAOs are normalised

default: 0



	Basis.TestBasisGradients (boolean)
	Chooses whether gradients of energy with respect to basis function coefficients
should be tested (using numerical vs. analytical gradients). WARNING : this
produces large amounts of data

default: F



	Basis.TestBasisGradTot (boolean)
	Test total gradient ?

default: F



	Basis.TestBasisGradBoth (boolean)
	Test both S- and H-derived gradients (i.e. gradients arising from change of
S or H when support functions vary) ?

default: F



	Basis.TestBasisGrad_S (boolean)
	Test S-derived gradient ?

default: F



	Basis.TestBasisGrad_H (boolean)
	Test H-derived gradient ?

default: F



	Basis.PAOs_OneToOne (boolean)
	Assign PAOs to individual support functions (implies no support function optimisation)

default: F
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Integration Grid


	Grid.PointsAlong[X/Y/Z] (integer)
	Grid points along x (y,z). Overwrites the values set by Grid.GridCutoff.
The default FFT code requires that the number of grid points have prime
factors of 2, 3 or 5

default: 0



	Grid.InBlock[X/Y/Z] (integer)
	This is the size of a grid point block (i.e., how many grid points are in one
block in the x (y,z) direction), which must be a multiple of 2, 3,
or 5 (larger values may impact on parallel efficiency).

default: 4



	Grid.ReadBlocks (boolean)
	If specified, the code reads information about blocks from the file make_blk.dat

default: F
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Generating PAOs


Introduction

CONQUEST includes a utility for generating the PAO basis files (MakeIonFiles with source code in the directory tools/BasisGeneration), and we also provide pseudopotential files (from the PseudoDojo [http://www.pseudo-dojo.org/] database).  The input files will generate a reasonable default basis set (though we can offer no guarantees: users must test the accuracy and convergence of their basis sets).  Here we will discuss how to generate both default and custom basis sets.  Full details of the basis sets can be found in a recent paper [GP1].



Default basis sets

To generate basis functions, radii for the PAOs must be specified; by default, the utility will set these radii automatically.  The radii can be set so that the different shells either share the same radii, or share an energy shift associated with confinement.  The default behaviour is to generate basis sets where shells share radii (to change this, add the line Atom.Cutoffs energy to the input file).  There are four default basis set sizes:


	minimal (single zeta, SZ)


	small   (single zeta and polarisation, SZP)


	medium  (double zeta, single polarisation, DZP)


	large   (triple zeta, triple polarisation, TZTP)




Generally, reasonable results will be obtained with a medium (DZP) basis, though this should always be tested.  Minimal and small basis sets are much faster (and are the only basis sets compatible with linear scaling), but less reliable.  The large basis set will be slower (often it is twice the size of the medium basis set, so diagonalisation will be up to eight times slower) but more reliable and accurate.

We note that Group I and II atoms are a little problematic: the standard approach for most other elements may produce a somewhat limited basis set, so we have created a more accurate, customised input file for these elements (with the exception of Na and Mg, where the pseudopotential does not include l=2 components, so the default approach is all that is possible).  These should be tested carefully.
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Specifying basis sets

The generation utility gives the user complete control over the basis sets that are produced.  As an example, we reproduce below the input file for strontium (Sr) and discuss the layout.

%block Sr
Atom.PseudopotentialFile Sr.in
Atom.VKBFile Sr.pot
Atom.Perturbative_Polarised F
Atom.PAO_N_Shells 5
Atom.BasisBlock SrBlock
%endblock

%block SrBlock
# n, l, number of zetas
4 0 1
4 1 1
5 0 2
5 1 1
4 2 1
# Radii for PAOs (bohr)
4.0
5.0
10.1 5.7
10.1
10.1
%endblock





In this case, we specify five shells (combinations of n and l) via the Atom.PAO_N_Shells tag, with polarisation functions found simply by solving the Schrodinger equation in the usual way (the alternative, perturbative polarisation, is discussed below).  We must then specify a block that defines these shells (Atom.BasisBlock SrBlock).  Within that block, we give the number of zeta functions for each (n,l) pair (specified as a line n l nzeta) followed by the radii for the zeta functions.

Setting radii for the different shells is a complex process which requires considerable time and care, with an extensive literature; we cannot provide significant help, but only make suggestions.  In the first instance, the default radii are a good starting point.  Note that the default setting Atom.Cutoffs radii averages the radii between shells, while Atom.Cutoffs energy finds different radii for each shell (so that the energy change due to confinement is the same for all shells).  We recommend starting from one of these sets of radii, and then testing and optimising the radii against some key properties of the system.

A common approach to the generation of polarisation functions (i.e. unoccupied states) is to perturb a valence state (typically the highest energy valence state) to generate a function with angular momentum increased by one; this is the default behaviour.  In this case, the radii for the polarisation state should be the same as the shell being polarised (so for Si, we would perturb the 3p (n=3, l=1) state to get the 3d (n=3, l=2) state), and at present the same number of zeta functions must be specified for the polarisation shell as for the unperturbed shell.  For instance, for Si:

%block Si
Atom.PseudopotentialFile Si.in
Atom.VKBFile Si.pot
Atom.PAO_N_Shells 3
Atom.BasisBlock SiBlock
%endblock

%block SiBlock
# n, l, number of zetas
3 0 2
3 1 2
3 2 2
# Radii for PAOs (bohr)
8.0 4.0
8.0 4.0
8.0 4.0
%endblock





The perturbative option can be turned off by specifying Atom.Perturbative_Polarised F in the input file.  (Note that in the strontium example above we have specified two polarisation shells, so cannot use the perturbative approach.)

By default, the utility calculates radii which are shared between shells; it is possible to specify instead shared energy shifts using Atom.Cutoffs energy, but this can only be done for valence shells, and so must use the perturbative polarisation approach for polarisation functions.
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Compiling

To compile the code, the same system.make can be used as is specified for the main code.  Once this is done, simply issue the ccommand make in the tools/BasisGeneration directory.  The resulting executable will be placed in the bin directory.
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Generating new pseudopotentials

CONQUEST is supplied with a complete set of pseudopotentials for the elements in the PseudoDojo [http://www.pseudo-dojo.org/] database (covering LDA, PBE and PBEsol exchange-correlation functionals).  In order to generate new pseudopotential files, users will need the Hamann [http://www.mat-simresearch.com/] pseudopotential code ONCVPSP v3.3.1 (the current release) and the patch file Conquest_ONCVPSP_output.patch which is in the tools directory.  After patching and compiling the Hamann code (to patch the code, copy the patch to the ONCVPSP src directory, and issue the command patch -p0 < Conquest_ONCVPSP_output.patch; we cannot provide any support for this) the oncvpsp.x utility will generate a file VPS.dat which should be renamed (something like element.pot as in the CONQUEST pseudopotential files) and specified in the input file using the Atom.VKBFile tag.
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Introductory Tutorials

These introductory tutorials will give you an overview of how to run
Conquest, the files and parameter settings required, and what output
to expect.


Bulk silicon: input, output and SCF

We start with a very basic introduction to the input
required for CONQUEST, the output generated, and the self-consistency
(SCF) procedure; it uses the same system as the first of the examples
in the manual, but provides more detail.  The files are found in
docs/tutorials/Introductory_1.

CONQUEST requires the following files to run:


	The input file: Conquest_input


	A coordinates file (name set in Conquest_input; no default)


	Ion files (suffix .ion), which provide the pseudopotentials and
pseudo-atomic orbitals (PAOs)




The input file requires the user to provide a certain amount of
information.  The minimal file that is provided for this tutorial
gives most of these:

# Input/Output
IO.Title Bulk Si 8 atoms static
IO.Coordinates ionpos.dat

# General Parameters
General.NumberOfSpecies 1

%block ChemicalSpeciesLabel
1  28.0850   Si_SZ
%endblock

# Moving Atoms
AtomMove.TypeOfRun static

# Finding the density matrix
DM.SolutionMethod diagon

# k-points
Diag.GammaCentred T
Diag.MPMesh T
Diag.MPMeshX 2
Diag.MPMeshY 2
Diag.MPMeshZ 2





The key entries are:


	the coordinate file (IO.Coordinates);


	the number of species (General.NumberOfSpecies);


	the specification for the species (the block
ChemicalSpeciesLabel gives the atomic mass and the ion file name
for all species);


	the type of run (AtomMove.TypeOfRun which defaults to static)




The Brillouin zone sampling must be investigated carefully, as for
all periodic electronic structure calculations.  The Monkhorst-Pack
mesh (Diag.MPMesh) offers a convenient way to do this systematically.
The job title is purely for reference.  Further parameters are
discussed in the next tutorial


	The coordinate file IO.Coordinates


	The number of species General.NumberOfSpecies


	The ion files for the species


	The basic input file


	The output


	Changing the output level and destination


	Controlling the SCF (tolerance and iterations, options)






Bulk silicon: parameters to converge


	The files that are needed


	Coordinates


	Ion files


	Input file: Conquest_input






	Integration grid


	Brillouin zone sampling


	Possibly basis set size






Bulk silicon: analysis


	The files that are needed


	Coordinates


	Ion files


	Input file: Conquest_input






	Total DOS


	Atom-projected DOS


	Band structure output


	Charge density and bands


	Atomic charges








            

          

      

      

    

  

    
      
          
            
  
Structural Relaxation Tutorials

We now turn to structural relaxation, covering both atomic relaxation
and simulation cell relaxation.


Atomic relaxation: lbfgs


	Parameters that are needed


	The output


	Files in Structural_relaxation_1






Atomic relaxation: Conjugate gradients


	Parameters that are needed


	The output


	Files in Structural_relaxation_2






Atomic relaxation: Quenched MD


	Parameters that are needed


	The output


	Files in Structural_relaxation_3






Cell relaxation: Conjugate gradients


	Parameters that are needed


	The output


	Files in Structural_relaxation_4








            

          

      

      

    

  

    
      
          
            
  
Molecular Dynamics Tutorials

These tutorials introduce molecular dynamics (MD) in CONQUEST, though
not the topic of MD itself, for which you should consult an
appropriate textbook.


Molecular dynamics: NVE


	Parameters that are needed


	The output


	Files in MD_1






Molecular dynamics: NVT with SVR


	Parameters that are needed


	The output


	Files in MD_2






Molecular dynamics: NVT with Nose-Hoover chains


	Parameters that are needed


	The output


	Files in MD_3






Molecular dynamics: NPT with SVR and Parrinello-Rahman


	Parameters that are needed


	The output


	Files in MD_4






Molecular dynamics: NPT with Nose-Hoover chains


	Parameters that are needed


	The output


	Files in MD_5






Molecular dynamics: Continuing a run


	Parameters that are needed


	The output


	Files in MD_6








            

          

      

      

    

  

    
      
          
            
  
Basis Function Tutorials

We now introduce details of the basis sets used in CONQUEST, and how
they are specified and optimised.


MSSF: local filter diagonalisation


	Parameters that are needed


	The output


	Files in Basis_sets_1






MSSF: Optimisation


	Parameters that are needed


	The output


	Files in Basis_sets_2








            

          

      

      

    

  

    
      
          
            
  
Advanced Tutorials

These tutorials cover more advanced topics in CONQUEST, and assume a
reasonable familiarity and confidence with the general operation of
the code.


Initialising spins


	Parameters that are needed


	The output


	Files in Advanced_1






An introduction to linear scaling


	Parameters that are needed


	The output


	Files in Advanced_2








            

          

      

      

    

  

    
      
          
            
  
Background on energy, forces and stress

A number of different ways of formulating the energy exist in Conquest at the moment, involving both self-consistent and non-self-consistent densities and potentials, both with and without the neutral atom potential.  With self-consistency, all formulations should give the same result, though numerical issues may give small differences; without self-consistency the Harris-Foulkes functional is more accurate.


Self-consistent calculations

We define the energy in Conquest in two ways that are equivalent at the self-consistent ground state.  The Harris-Foulkes energy is given as:


\[E_{HF} = 2\mathrm{Tr}\left[KH\right] + \Delta E_{Ha} + \Delta E_{XC} + E_{II}\]

where the first term is the band structure energy, equivalent to the sum over the energies of the occupied states, the second two terms compensate for double counting and the final term gives the ion-ion interaction:


\[E_{II} = \frac{1}{2}\left( \sum_{ij} \frac{Z_i Z_j}{\mid \mathbf{R}_i - \mathbf{R}_j \mid} \right)\]

The Hamiltonian is defined as:


\[\hat{H} = \hat{T} + \hat{V}_{L} + \hat{V}_{NL} + V_{Ha} + V_{XC}\]

where the operators are the kinetic energy, the local and non-local pseudopotentials, the Hartree potential, defined as \(V_{Ha} = \int d\mathbf{r}^\prime n(\mathbf{r}^\prime)/\mid \mathbf{r} - \mathbf{r}^\prime\mid\), and the exchange-correlation potential.  The alternative form, often known as the DFT energy, is:


\[E_{DFT} = 2\mathrm{Tr}\left[K(T + V_{L} + V_{NL})\right] + E_{Ha} + E_{XC} + E_{II}\]

with the Hartree energy defined as usual:


\[E_{Ha} = \frac{1}{2}\int\int d\mathbf{r}d\mathbf{r}^{\prime} \frac{n(\mathbf{r})n(\mathbf{r}^\prime)}{\mid \mathbf{r} - \mathbf{r}^\prime\mid}\]

along with the exchange-correlation energy:


\[E_{XC} = \int d\mathbf{r} \epsilon_{XC}\left[n\right] n(\mathbf{r})\]

For the Harris-Foulkes and DFT energies to be equal, it is easy to see that the double counting correction terms in the Harris-Foulkes formalism must be:


\[\Delta E_{Ha} = -E_{Ha} = -\frac{1}{2}\int\int d\mathbf{r}d\mathbf{r}^{\prime} \frac{n(\mathbf{r})n(\mathbf{r}^\prime)}{\mid \mathbf{r} - \mathbf{r}^\prime\mid}\]

and


\[\Delta E_{XC} = \int d\mathbf{r} \left(\epsilon_{XC}[n] - V_{XC}[n]\right)n(\mathbf{r})\]

When calculating forces and stress with self-consistency, we generally use the differentials of the DFT energy rather than the Harris-Foulkes energy; this enables us to separate contributions that are calculated in different ways (in particular on those that are calculated on the integration grid from those that are not).

Go to top.


Neutral atom potential

In a DFT code using local orbitals as basis functions, the total energy is most conveniently written in terms of the interaction of neutral atoms: this is simply a reformulation of the total energy which, in particular, reduces the ion-ion interaction to a sum over short-range pair-wise interactions.  The charge density of interest is now the difference between the total charge density and a superposition of atomic densities, notated as \(\delta n(\mathbf{r}) = n(\mathbf{r}) - \sum_i n_i(\mathbf{r})\) for atomic densities \(n_i(\mathbf{r})\).  We write:


\[E_{DFT, NA} = 2\mathrm{Tr}\left[K(T + V_{NA} + V_{NL})\right] + E_{\delta Ha} + E_{XC} + E_{SII}\]

where the second term is defined as:


\[E_{\delta Ha} = \frac{1}{2}\int\int d\mathbf{r}d\mathbf{r}^{\prime} \frac{\delta n(\mathbf{r})\delta n(\mathbf{r}^\prime)}{\mid \mathbf{r} - \mathbf{r}^\prime\mid}\]

The final term, the screened ion-ion interaction, is short-ranged, and written as:


\[E_{SII} = \frac{1}{2}\left( \sum_{ij} \frac{Z_i Z_j}{\mid \mathbf{R}_i - \mathbf{R}_j \mid} - \int d\mathbf{r} n_i(\mathbf{r})V_{Ha,j}(\mathbf{r}) \right)\]

where \(V_{Ha,i}(\mathbf{r})\) is the Hartree potential from the atomic density \(n_i(\mathbf{r})\).  We define the neutral atom potential for an atom as \(V_{NA,i}(\mathbf{r}) = V_{L,i}(\mathbf{r}) + V_{Ha,i}(\mathbf{r})\), combining the local potential and the Hartree potential for the atomic density; the overall neutral atom potential is given as the sum over the atomic densities, \(V_{NA}(\mathbf{r}) = \sum_i V_{NA,i}(\mathbf{r})\).  If we write the pseudo-atomic density as \(n_{PAD}(\mathbf{r}) = \sum_i n_i(\mathbf{r})\) then we can also write \(V_{NA}(\mathbf{r}) = V_L(\mathbf{r}) + V_{Ha, PAD}(\mathbf{r})\).

In this case, we can write the Harris-Foulkes energy as:


\[E_{HF} = 2\mathrm{Tr}\left[KH\right] + \Delta E_{Ha} + \Delta E_{XC} + E_{SII}\]

with the Hamiltonian defined as:


\[\hat{H} = \hat{T} + \hat{V}_{NA} + \hat{V}_{NL} + V_{\delta Ha} + V_{XC}\]

where \(V_{\delta Ha}(\mathbf{r}) = \int d\mathbf{r^\prime} \delta n(\mathbf{r^\prime})/\mid \mathbf{r} - \mathbf{r}^\prime\mid\).  Accordingly, the double counting Hartree correction term has to change:


\[\Delta E_{Ha} = -E_{\delta Ha} - \int d\mathbf{r} \delta n(\mathbf{r})\sum_i V_{Ha,i}(\mathbf{r}).\]
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Non-self-consistent calculations

In non-self-consistent calculations, we use the Harris-Foulkes functional, along with a reasonable guess for the input density, which is normally taken as the superposition of atomic densities, \(n_{in}(\mathbf{r})\) and write:


\[E_{NSC} = 2\mathrm{Tr}\left[KH\right] + \Delta E_{Ha}\left[n_{in}\right] + \Delta E_{XC}\left[n_{in}\right] + E_{II}\]

Notice that we effectively have two densities being used here: \(n_{in}\) (which is normally the superposition of atomic densities used in the neutral atom case) and and effective output density, \(n_{out} = \sum_{ij} \phi_i K_{ij} \phi_j\) which comes from the band energy (first term); this complicates the calculation of forces and stress compared to the self-consistent case, as we have to consider contributions from both densities.

For the neutral atom potential, \(\delta n(\mathbf{r}) = 0\) by definition, which also means that \(E_{\delta Ha} = 0\) and \(\Delta E_{Ha}=0\).
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Partial core corrections

Also known as non-linear core corrections, partial core corrections (PCC) [EFS1] add a model core charge to the pseudopotential to allow for the non-linear exchange-correlation interation between core and valence charge (which is linearised in standard pseudopotentials); this generally improves the accuracy of the pseudopotential.  The exchange-correlation potential is evaluated in terms of the combined charge density, \(n_v(\mathbf{r}) + n_c(\mathbf{r})\) where the valence charge is input or output charge density defined above: \(V_{XC}\left[ n_v + n_c \right]\).  The exchange-correlation energy becomes:


\[E_{XC} = \int d\mathbf{r} \left(n_v(\mathbf{r}) + n_c(\mathbf{r})\right) V_{XC}\left[ n_v + n_c \right] .\]

Once this change to the charge density has been made, there is no change to the DFT energy.  However, the double counting term for Harris-Foulkes needs redefining, since XC contribution to the band energy is \(2Tr[KV_{XC}] = \int d\mathbf{r} n_v(\mathbf{r}) V_{XC}[n_v + n_c]\).  We write:


\[\begin{split}\Delta E_{XC} &=& \int d\mathbf{r} \left(n_v(\mathbf{r}) + n_c(\mathbf{r})\right)\epsilon_{XC}[n_v + n_c] - \int d\mathbf{r} n_v(\mathbf{r})V_{XC}[n_v + n_c]\\
&=& \int d\mathbf{r} n_c(\mathbf{r})\epsilon_{XC}[n_v + n_c] + \int d\mathbf{r} \left(\epsilon_{XC}[n_v + n_c] - V_{XC}[n_v + n_c]\right)n_v(\mathbf{r})\end{split}\]

There is an extra factor of \(\int d\mathbf{r} n_c(\mathbf{r})\epsilon_{XC}[n_v + n_c]\) over and above the usual term.
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Forces and Stresses

It is important that the forces and stresses be the exact derivatives of the energy, for consistency.  In particular, this means that as the energy is calculated in different ways for different contributions, the force or stress contribution must be calculated in the same way.
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Forces

Forces are defined as the change in energy with respect to atomic positions; as the basis functions move with the atoms, these changes will also include Pulay terms.  The forces found in Conquest are documented extensively elsewhere [EFS2, EFS3] though the changes needed to account for PCC, particularly in the non-self-consistent case, have not been published and are given here for completeness.  As well as the Hellmann-Feynman forces (which come from the movement of the local and non-local pseudopotentials with the atoms) we define Pulay forces (divided into two parts, known as phi-Pulay which come from changes in the Hamiltonian matrix, and S-Pulay, which come from changes in the overlap matrix; the phi-Pulay forces are calculated in three contributions, which depend on how the respective parts of the Hamiltonian matrix are calculated: the kinetic energy; the non-local pseudopotential; and the remaining terms which are all found on the integration grid).  The ion-ion interactions also contribute forces.

The inclusion of PCC adds an extra term to the forces in all calculations, which comes from the change of the core density as the atoms move; the force on atom \(i\) is given as:


\[\mathbf{F}^{PCC}_i = -\int d\mathbf{r} \nabla_i n^c_i(\mathbf{r}) V_{XC}[n_v + n_c]\]

If the non-self-consistent formalism is used, then a further term is added (the non-self-consistent force changes) to include the gradient of the core charge.  The non-self-consistent force is now written as:


\[\mathbf{F}^{NSC}_i = -\int d\mathbf{r} V_{\delta Ha}(\mathbf{r}) \nabla_i n^v_i(\mathbf{r}) - \int d\mathbf{r} \delta n(\mathbf{r}) V_{XC}^\prime\left[n^{in}_v + n_c\right] \left( \nabla_i n^v_i(\mathbf{r}) + \nabla_i n^c_i(\mathbf{r}) \right)\]

where \(V^\prime_{XC}\) is the derivative of the exchange-correlation potential with respect to charge density.
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Stress

The stress includes all contributions to the change of energy with the lattice constants; the calculation of stress in Conquest is documented in a paper being prepared for publication, but we give a brief overview here.  As Conquest uses orthorhombic cells, only the diagonal stress components (\(\sigma_{\alpha\alpha}\)) are calculated.

In most cases, forces also contribute to the stress; it is easy to show that the stress contribution is given by:


\[\sigma_{\alpha\alpha} = \sum_i F_{i\alpha}R_{i\alpha}\]

where \(R_{i\alpha}\) is the position of the atom.  As well as these contributions, there are more subtle terms.  Any energies calculated on the grid will contribute to the stress as the integration grid changes with cell size (the stress is simply the energy calculated), and the Hartree potential contributes a term related to the change in the reciprocal lattice vectors (as it is calculated by Fourier transforming the charge density).  If the exchange-correlation functional is a GGA functional, then a further term coming from the change of the gradient of the density with the cell size arises.  (For non-self-consistent calculations this leads to some complications, as this term technically requires both input and output densities; at present, we approximate this as a mixture of the term calculated with input density and the term calculated with output density; the proportion can be adjusted using the parameter General.MixXCGGAInOut documented in the Advanced and obscure tags section of the manual, though we do not recommend changing it.)
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Structural relaxation: Theory

Structural relaxation involves optimisation of the ionic coordinates,
optimisation of the simulation cell, or both, with respect to the DFT total
energy or the enthalpy if the cell is not fixed.


Ionic relaxation


L-BFGS:

To be written…



Conjugate gradients

The most naive geometry optimisation algorithm is steepest descent: we calculate
the gradient of the DFT total energy (i.e. the force) and propagate the system
in the direction of the steepest gradient (the direction of the force vector)
until the energy stops decreasing. We choose the direction (largest gradient in
this case) and perform a line search. This will be sufficient if the potential
energy surface is well-behaved, but in most cases convergence will require many
iterations. Conjugate gradients is a well-established method the improves upon
steepest descent in the choice of search direction. Without going into too much
detail, we choose a new search direction that is orthogonal to all previous
search directions using the conjugacy ratio \(\beta\). At iteration
\(n\), it is given by,


\[\beta_n = \beta_{n-1} + \frac{\mathbf{f}_n^T\mathbf{f}_n}{\mathbf{f}_{n-1}^T\mathbf{f}_{n-1}}\]

This is the Fletcher-Reeves formulation; note that \(\beta_0 = 0\). We can
then construct the search direction at step \(n\), \(D_n\),


\[D_n = \beta_n D_{n-1} + \mathbf{f}_n,\]

and peform the line minimisation in this direction. This process is repeated
until the maximum force component is below some threshold.
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Quenched MD

The system is propagated in the direction of steepest descent as determined by
the DFT forces, and the velocity is scaled down as the system approaches its
zero-temperature equilibrium configuration.
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FIRE Quenched MD

The system is propagated using the modified equation of motion [Tb1],


\[\mathbf{\dot{v}}(t) = \mathbf{F}(t)/m -
\gamma(t)|\mathbf{v}(t)|[\mathbf{\hat{v}}(t) - \mathbf{\hat{F}}(t)]\]

which has the effect of introducing an acceleration in a direction that is
steeper than the current direction of motion. If the power \(P(t) =
\mathbf{F}(t)\cdot\mathbf{v}(t)\) is positive then the system is moving
“downhill” on the potential energy surface, and the stopping criterion is when
it becomes negative (moving “uphill”).
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Cell optimisation

When optimising the cell with fixed fractional ionic coordinates, the same
conjugate gradients method is used as above, but minimising the enthalpy with
respect to the cell vectors.
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Combined optimisation

The ionic and cell degrees of freedom can be relaxed simultaneously by combining
all of their coordinates into a single vector and optimising them with respect
to the enthalpy of the system. However, this atomic forces and total stresses
having numerical values of the same order of magnitude, and changes in ionic
coordinates and cell vectors being of the same order of magnitude. Using the
method of Pfrommer et al. [Tb2], the latter can be enforced
by using fractional coordinates for the ionic positions, and fractional lattice
vectors of the form \(h = (1 + \epsilon)h_0\) where h is the matrix of
lattice vectors, \(h_0\) is the matrix for some reference configuration and
epsilon is the strain matrix. The “fractional” force on the i th atom is then
\(\mathbf{F}_i = g\mathbf{f}_i\) where \(\mathbf{f}_i\) is the
DFT-calculated force multiplied by the metric tensor \(g = h^Th\). The
“fractional” stress is,


\[f^{(\epsilon)} = -(\sigma + p\Omega)(1 + \epsilon^T)\]

where \(\sigma\) is the DFT-calculated stress, \(p\) is the target
pressure and \(\Omega\) is the volume. The resulting vector is optimised
using the same conjugate gradients algorithm as before, minimising the enthalpy.




[Tb1]
E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch. Structural Relaxation Made Simple. Phys. Rev. Lett., 97:2897, 2006. doi:10.1103/PhysRevLett.97.170201 [https://doi.org/10.1103/PhysRevLett.97.170201].




[Tb2]
B. G. Pfrommer, M. Côté, S. Louie, and M. L. Cohen. Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys., 131:233, 1997. doi:10.1006/jcph.1996.5612 [https://doi.org/10.1006/jcph.1996.5612].
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Molecular Dynamics: Theory


Microcanonical (NVE) ensemble

The Hamiltonian for the microcanonical ensemble is,


\[\mathcal{H} = \sum_{i=1}^N \frac{\mathbf{p}_i^2}{2m_i} + U(\mathbf{r}_i)\]

where \(\mathbf{p}_i\) and \(\mathbf{r}_i\) are the position and
momentum of particle \(i\) and \(U\) is the DFT total (potential)
energy. Hamilton’s equations can be solved to give the following equations of
motion:


\[\begin{split}\mathbf{\dot{r}}_i &= \frac{\mathbf{p}_i}{m_i} \\
\mathbf{\dot{p}}_i &= \frac{\partial U(\mathbf{r}_i)}{\partial\mathbf{r}_i} = \mathbf{F_i}\end{split}\]

In order to construct a time-reversible algorithm from these equations, the
Liouvillian formulation is employed [Ta1] (trivially, in this
case). The Liouville operator \(L\) can be defined in terms of position and
momentum components:


\[iL = \mathbf{\dot{r}}\frac{\partial}{\partial\mathbf{r}} + \mathbf{\dot{p}}\frac{\partial}{\partial\mathbf{p}} = i(L_r + L_p).\]

The Liouvillian can be used to construct the classical propagator, which relates
the state \(f\) of the system at time 0 to its state at time \(t\):


\[f[\mathbf{p}^N(t),\mathbf{r}^N(t)] = e^{iLt}f[\mathbf{p}^N(0),\mathbf{r}^N(0)]\]

Taking the individual position and momentum parts of the Liouvillian \(L_r\)
and \(L_p\), it can be shown that applying it to the state \(f\) result
in a simple linear shift in coordinates and a simple linear shift in momentum
respectively:


\[\begin{split}iL_rf(t) &= f[\mathbf{p}^N(0),\mathbf{r}^N(0) + \mathbf{\dot{r}}^N(0)t] \\
iL_pf(t) &= f[\mathbf{p}^N(0) + \mathbf{F}^N(0)t,\mathbf{r}^N(0)]\end{split}\]

However, we cannot simply replace \(e^{iLt}\) with \(e^{iL_rt}\) because
\(iL_r\) and \(iL_p\) are non-commuting operators, so we must employ the
Trotter-Suzuki identity:


\[e^{A+B} = \lim_{P\rightarrow\infty}\left(e^{A/2P}e^{B/P}e^{A/2P}\right)^P\]

Thus for a small enough time step \(\Delta t = t/P\) and to first order, a
discrete time step corresponds to the application of the discrete time
propagator \(G\),


\[G(\Delta t) = U_1\left(\frac{\Delta t}{2}\right)U_2\left(\Delta t\right)U_1\left(\frac{\Delta t}{2}\right) = e^{iL_1\frac{\Delta t}{2}}e^{iL_2\Delta t}e^{iL_1\frac{\Delta t}{2}},\]

which can be shown to be unitary and therefore time-reversible. Applying the
operators \(U\) in the sequence determined by the Trotter decomposition
generates the velocity Verlet algorithm, which is used to integrate
microcanonical molecular dynamics in CONQUEST. For a detailed derivation of the
algorithm, refer to Frenkel & Smit [Ta1].
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Extended Lagrangian Born-Oppenheimer MD (XL-BOMD)

If the electronic density from the previous ionic step is used as an initila
guess for the next SCF cycle, a problem arises because this process breaks the
time-reversibility of the dynamics. This is manifested as a gradual drift in the
total energy in the case of a NVE simulation, or the conserved quantity in the
case of non-Hamiltonian dynamics. The solution proposed by Niklasson
[Ta2, Ta3] is to introduce auxilliary electronic
degrees of freedom into the Lagrangian, which can be propagated via
time-reversible integrators.

The extended Lagrangian used in CONQUEST is [Ta4],


\[\mathcal{L}^\mathrm{XBO}\left(\mathbf{X}, \mathbf{\dot{X}}, \mathbf{R}, \mathbf{\dot{R}}\right) = \mathcal{L}^\mathrm{BO}\left(\mathbf{R}, \mathbf{\dot{R}}\right) + \frac{1}{2}\mu\mathrm{Tr}\left[\mathbf{\dot{X}}^2\right] - \frac{1}{2}\mu\omega^2\mathrm{Tr}\left[(\mathbf{LS} - \mathbf{X})^2\right],\]

where \(\mathbf{X}\) is a sparse matrix with the same range as
\(\mathbf{LS}\), \(\mu\) is the fictitious electron mass and
\(\omega\) is the curvature of the auxiliary harmonic potential. The
Euler-Lagrange equations of motion are then,


\[\begin{split}m_i\mathbf{\ddot{r}_i} &= -\frac{\partial U[{{\mathbf{R;LS}}}]}{\partial\mathbf{r}_i} = \mathbf{F_i} \\
\mathbf{\ddot{X}} &= \omega^2(\mathbf{LS} - \mathbf{X}),\end{split}\]

The first of these is simply Newton’s second law, and the velocity update
equation of motion in the microcanonical ensemble. The second can be integrated
using a time-reversible algorithm, the velocity Verlet scheme in the case of
CONQUEST [Ta4]:


\[\begin{split}\mathbf{X}(t+\delta t) &= 2\mathbf{X}(t) -\mathbf{X}(t-\delta t) + \delta t^2\omega^2\left[\mathbf{L}(t)\mathbf{S}(t)-\mathbf{X}(t)\right] \\
&+ a\sum_{m=0}^M c_m\mathbf{X}(t-m\delta t)\end{split}\]

i.e. the trajectory of \(\mathbf{X}(t)\) is time-reversible, and evolves in
a harmonic potential centred on the ground state density
\(\mathbf{L}(t)\mathbf{S}(t)\). The matrix \(\mathbf{XS}^{-1}\) is a
good guess for the \(\mathbf{L}\) matrix in the Order(N) scheme.

Despite the time-reversitibility, the \(\mathbf{X}\) matrix tends in
practice to gradually drift from the harmonic centre over time, increasing the
number of SCF iterations required to reach the minimum over the course of the
simulation. To remove such numerical errors, the final dissipative term is
included, and is found to have a minimal effect on the time-reversibility. We
note that since the auxiliary variable \(X\) is used to generate an intial
guess for the SCF process, it does not appear in the conserved
(pseudo-Hamiltonian) quantity for the dynamics.
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Non-Hamiltonian dynamics


Extended system method

Hamiltonian dynamics generally describes systems that are isolated from their
surroundings, but in the canonical and isobaric-isothermal ensembles, we need to
couple the system to an external heat bath and/or stress. It is possible to
model such systems by positing a set of equations of non-Hamiltonian equations
of motion, and proving that they generate the correct statistical ensemble
[Ta5]. This is the extended system approach: we modify the
Hamiltonian to include the thermostat and/or barostat degrees of freedom, derive
the (pseudo-) Hamiltonian equations of motion, and demostrate that the correct
phase space distribution for the ensemble is recovered.
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Canonical (NVT) ensemble

In the Nose-Hoover formulation [Ta6, Ta7], the Hamiltonian
for a system in the canonical ensemble can be written,


\[\mathcal{H} = \sum_i \frac{1}{2}m_i s^2\mathbf{\dot{r}}_i^2 + U(\mathbf{r}_i) + \frac{1}{2}Q\dot{s}^2 - (n_f + 1)k_B T \ln s,\]

where \(\mathbf{r}_i\) and \(\mathbf{\dot{r}_i}\) are respectively the
position and velocity of particle \(i\), \(U\) is the potential energy,
in this case the DFT total energy, \(s\) is a dimensionless quantity that
can be interpreted post-hoc as a time step scaling factor, \(Q\) is the
fictitious mass of the heat bath and \(n_f\) is the number of ionic degrees
of freedom. Hamilton’s equations can be solved to generate the Nose-Hoover
equations of motion. However Martyna et al. demonstrate that this method does
not generate an ergodic trajectory, and proposed an alternative formulation
[Ta8] in which the temperature is controlled by a chain of
\(M\) coupled thermostats of mass \(Q_k\), notional position
\(\eta_k\) and conjugate momentum \(p_{\eta_k}\):


\[\begin{split}\mathbf{\dot{r}_i} &= \frac{\mathbf{p}_i}{m_i} \\
\mathbf{\dot{p}_i} &= -\frac{\partial U(\mathbf{r})}{\partial \mathbf{r}_i} - \frac{p_{\eta_1}}{Q_1}\mathbf{p}_i \\
\dot{\eta}_k &= \frac{p_{\eta_k}}{Q_k} \\
\dot{p}_{\eta_1} &= \left(\sum_{i=1}^N\frac{\mathbf{p}_i}{m_i} - n_fk_BT\right) - \frac{p_{\eta_{2}}}{Q_{\eta_{2}}}p_{\eta_1} \\
\dot{p}_{\eta_k} &= \left(\frac{p^2_{\eta_{k-1}}}{Q_{k-1}} - k_BT\right) - \frac{p_{\eta_{k+1}}}{Q_{k+1}}p_{\eta_k} \\
\dot{p}_{\eta_M} &= \left(\frac{p^2_{\eta_{M-1}}}{Q_{M-1}} - k_BT\right)\end{split}\]

The Liouvillian for these equations of motion can be non-uniquely decomposed
into components of ionic position (\(iL_r\)) and momentum (\(iL_p\)) as
in the microcanonical case, the extended Lagrangian (\(iL_\mathrm{XL}\), and
a Nose-Hoover chain component (\(iL_\mathrm{NHC}\))


\[iL = iL_\mathrm{NHC} + iL_p + iL_{\mathrm{XL}} + iL_r,\]

which is directly translated into an algorithm with the Trotter-Suzuki
expansion,


\[\begin{split}\exp(iL\Delta t) = &\exp\left(iL_\mathrm{NHC}\frac{\Delta t}{2}\right)\exp\left(iL_p\frac{\Delta t}{2}\right) \times \\
&\exp\left(iL_\mathrm{XL}\frac{\Delta t}{2}\right)\exp\left(iL_r\Delta t\right)\exp\left(iL_\mathrm{XL}\frac{\Delta t}{2}\right) \times \\
&\exp\left(iL_p\frac{\Delta t}{2}\right)\exp\left(iL_\mathrm{NHC}\frac{\Delta t}{2}\right)\end{split}\]

This is recognisable as the velocity Verlet algorithm with extended Lagrangian
integration which can be reduced to a single step, as described in
Extended Lagrangian Born-Oppenheimer MD (XL-BOMD), with a half time step
integration of the Nose-Hoover chain equations of motion before and after. For
full details of the integration scheme, see Hirakawa et al.
[Ta9].
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Isobaric-Isothermal (NPT) ensemble

The Parinello-Rahman equations of motion [Ta10] extend the
fixed cell equations of motion to include the cell degrees of freedom in the
extended system approach. We use the Martyna-Tobias-Tuckerman-Klein modification
[Ta11], which couples the variable cell equations of motion to a
Nose-Hoover chain the themrostat the system, recovering the isobaric-isothermal
(NPT) ensemble. For an unconstrained cell (i.e. the lattice vectors can change
freely), the equations of motion are,


\[\begin{split}\mathbf{\dot{r}}_i &= \frac{\mathbf{p}_i}{m_i} + \frac{\mathbf{p}_g}{W_g}\mathbf{r}_i \\
\mathbf{\dot{p}}_i &= \mathbf{F}_i - \frac{\mathbf{p}_g}{W_g}\mathbf{p}_i - \left(\frac{1}{N_f}\right)\frac{\mathrm{Tr}[\mathbf{p}_g]}{W_g}\mathbf{p}_i - \frac{p_\xi}{Q}\mathbf{p}_i \\
\mathbf{\dot{h}} &= \frac{\mathbf{p}_g\mathbf{h}}{W_g} \\
\mathbf{\dot{p}_g} &= V(\mathbf{P}_\mathrm{int}-\mathbf{I}P_\mathrm{ext}) + \left[\frac{1}{N_f}\sum_{i=1}^N\frac{\mathbf{p}_i^2}{m_i}\right]\mathbf{I} - \frac{p_\xi}{Q}\mathbf{p}_g \\
\dot{\xi} &= \frac{p_\xi}{Q} \\
\mathbf{\dot{p}}_g &= \sum_{i=1}^N\frac{\mathbf{p}_i^2}{m_i} + \frac{1}{W_g}\mathrm{Tr}[\mathbf{p}_g^T\mathbf{p}_g] - (N_f + d^2)kT\end{split}\]

Here, \(\mathbf{r}_i\), \(\mathbf{p}_i\) and \(m_i\) are the
position, momentum and mass of particle \(i\) respectively, \(\xi\),
\(p_\xi\) and \(Q\) are the position, momentum and mass of the
thermostat, and \(\mathbf{h}\), \(\mathbf{p}_g\) and \(W_g\) are the
matrix of lattice vectors, matrix of cell velocities and cell mass respectively.
Note that these equations only include one Nose-Hoover thermostat for
simplicity. Conquest uses the Shinoda-Shiga-Mikami splitting of the Liouvillian
[Ta12] to propagate the system. The Liouvillian is decomposed as,


\[iL = iL_r + iL_h + iL_v + iL_\mathrm{bath},\]

which can be further split,


\[\begin{split}iL_\mathrm{bath} &= iL_\mathrm{box} + iL_\mathrm{particles} \\
iL_\mathrm{box} &= iL_\mathrm{vbox} + iL_\xi + iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}} \\
iL_\mathrm{particles} &= iL_\mathrm{vpart} + iL_\xi + iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}}\end{split}\]

Using Liouville’s theorem, we have,


\[\begin{split}iL_r &= \sum_{i=1}^N[\mathbf{v}_i + \mathbf{v}_g\mathbf{r}_i]\cdot\nabla_{\mathbf{r}_i} \\
iL_h &= \sum_{\alpha,\beta}\mathbf{v}_{g,\alpha\beta}\mathbf{h}_{\alpha\beta}\frac{\partial}{\partial\mathbf{h}_{\alpha\beta}} \\
iL_v &= \sum_{i=1}^N\left(\frac{\mathbf{F}_i}{m_i}\right)\cdot\nabla_{\mathbf{v}_i} \\
iL_\mathrm{bath} &= iL_\mathrm{vpart} + iL_\mathrm{vbox} + iL_\xi + iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}} \\
&= \sum_{i=1}^N\left[-\left\{\mathbf{v}_g + \frac{1}{N_f}\mathrm{Tr}(\mathbf{v}_g) + v_{\xi_1}\right\}\mathbf{v}_i\right]\nabla_{\mathbf{v}_i} \\
&+ \sum_{\alpha,\beta}\left[\frac{F_\mathrm{box}}{W} - v_{\xi_1}\mathbf{v}_{g,\alpha\beta}\right]\frac{\partial}{\partial\mathbf{v}_{g,\alpha\beta}} \\
&+ \sum_{k=1}^M v_{\xi_k}\frac{\partial}{\partial\xi_k} \\
&+ \left[\frac{F_{\mathrm{NHC}_1}}{Q_1} - v_{\xi_1}v_{\xi_2}\right]\frac{\partial}{\partial v_{\xi_1}} \\
&+ \sum_{k=2}^M\left[\frac{1}{Q_k}(Q_{k-1}v_{\xi_{k-1}}^2 - kT_\mathrm{ext}) - v_{\xi_k}v_{\xi_{k+1}}\right]\frac{\partial}{\partial v_{\xi_k}} \\
&+ \left[\frac{1}{Q_M}(Q_{M-1}v_{\xi_{M-1}}^2 - kT_\mathrm{ext})\right]\frac{\partial}{\partial v_{\xi_M}}\end{split}\]

Here we use \(M\) heat baths in a Nose-Hoover chain. The Trotter-Suzuki
expansion is,


\[e^{iL\Delta t} = e^{iL_\mathrm{bath}\frac{\Delta t}{2}}e^{iL_v\frac{\Delta t}{2}}e^{iL_h\frac{\Delta t}{2}}e^{iL_r\Delta t}e^{iL_h\frac{\Delta t}{2}}e^{iL_v\frac{\Delta t}{2}}e^{iL_\mathrm{bath}\frac{\Delta t}{2}}.\]

The Liouvillian for the heat baths can be further expanded:


\[e^{iL_\mathrm{particles}\frac{\Delta t}{2}} = e^{\left(iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}}\right)\frac{\Delta t}{4}}e^{\left(iL_\xi + iL_\mathrm{vpart}\right)\frac{\Delta t}{2}}e^{\left(iL_\xi + iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}}\right)\frac{\Delta t}{4}}\]

Finally, expanding the first propagator in the previous expression, we have,


\[\begin{split}e^{\left(iL_{v_{\xi_1}} + iL_{v_{\xi_k}} + iL_{v_{\xi_M}}\right)\frac{\Delta t}{4}} &= e^{-i\left(-v_{\xi_1}v_{\xi_2}\frac{\partial}{\partial \xi_1} - \sum_{k=2}^Mv_{\xi_k}v_{\xi_{k+1}}\frac{\partial}{\partial \xi_k} - v_{\xi_{M-1}}v_{\xi_M}\frac{\partial}{\partial \xi_M}\right)\frac{\Delta t}{8}} \\
&\times e^{i\left(F_{\mathrm{NHC}_1}\frac{\partial}{\partial v_{\xi_1}} + F_{\mathrm{NHC}_k}\frac{\partial}{\partial v_{\xi_k}} + F_{\mathrm{NHC}_M}\frac{\partial}{\partial v_{\xi_M}}\right)\frac{\Delta t}{4}} \\
&\times e^{-i\left(-v_{\xi_1}v_{\xi_2}\frac{\partial}{\partial \xi_1} - \sum_{k=2}^Mv_{\xi_k}v_{\xi_{k+1}}\frac{\partial}{\partial \xi_k} - v_{\xi_{M-1}}v_{\xi_M}\frac{\partial}{\partial \xi_M}\right)\frac{\Delta t}{8}}\end{split}\]

These expressions are directly translated into the integration algorithm.
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Weak coupling thermostat/barostat

Instead of modifying the Hamiltonian, the Berendsen-type weak coupling method
[Ta13] involves coupling the ionic degrees of freedom to a an
external temperature and/or pressure bath via “the principle of least local
perturbation consistent with the required global coupling.” Thermostatting is
acheived via a Langevin-type equation of motion, in which the system is globally
coupled to a heat bath and subjected to random noise:


\[m_i\ddot{\mathbf{r}}_i = \mathbf{F}_i + m_i \gamma\left(\frac{T_0}{T}-1\right)\dot{\mathbf{r}}_i,\]

where \(\gamma\) is a global friction constant chosen to be the same for all
particles. This can be acheived in practice by rescaling the velocities
\(\mathbf{v}_i \rightarrow \lambda\mathbf{v}_i\), where \(\lambda\) is,


\[\lambda = \left[ 1 + \frac{\Delta t}{\tau_T}\left(\frac{T_0}{T}-1\right)\right]^{\frac{1}{2}}\]

A similar argument can be applied for weak coupling to an external pressure
bath. In the isobaric-isoenthalpic ensemble, the velocity of the particles can
be expressed,


\[\dot{\mathbf{r}} = \mathbf{v} - \frac{\beta(P_0 - P)}{3\tau_P}\mathbf{r},\]

i.e. the fractional coordinates are scaled by a factor determined by the
difference between the internal and external pressures, the isothermal
compressibility \(\beta\) and a pressure coupling time constant $tau_P$.
In the isotropic case, the cell scaling factor \(\mu\) can be expressed,


\[\mu = \left[ 1 - \frac{\Delta t}{\tau_P}(P_0 - P)\right]^{\frac{1}{3}},\]

where the compressibility is absorbed into the time time constant
\(\tau_P\). Allowing for fluctuations of all cell degrees of freedom, the
scaling factor becomes,


\[\mathbf{\mu} = \mathbf{I} - \frac{\beta\Delta t}{3\tau_P}(\mathbf{P}_0 - \mathbf{P})\]

While trivial to implement and in general stable, the weak-coupling method does
not recover the correct phase space distribution for the canonical or
isobaric-isothermal ensembles, for which the extended system method is
required.  It is no longer supported in CONQUEST, but the concepts are useful.
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Stochastic velocity rescaling

Stochastic velocity rescaling (SVR) [Ta14] is a modification of the
weak coupling method, in which a correctly constructed random force is added to
enforce the correct NVT (or NPT) phase space distribution. The kinetic energy is
rescaled such that the change in kinetic energy between thermostatting steps is,


\[dK = (\bar{K} - K)\frac{dt}{\tau} + 2\sqrt{\frac{K\bar{K}}{N_f}}\frac{dW}{\sqrt{\tau}}\]

where \(\bar{K}\) is the target kinetic energy (external temperature),
\(dt\) is the time step, \(\tau\) is the time scale of the thermostat,
\(N_f\) is the number of degrees of freedom and \(dW\) is a Wiener
process. Practically, the particle velocities are rescaled by a factor of
\(\alpha\), defined via,


\[\alpha^2 = e^{-\Delta t/\tau} + \frac{\bar{K}}{N_fK}\left(1-e^{-\Delta t/\tau}\right)\left(R_1^2 + \sum_{i=2}^{N_f}R_i^2\right) + 2e^{-\Delta t/2\tau}\sqrt{\frac{\bar{K}}{N_fK}\left(1-e^{-\Delta t/\tau}\right)R_1}\]

Where \(R_i\) is a set of \(N_f\) normally distributed random numbers
with unitary variance. This method can be applied to thermostat the NPT ensemble
by barostatting the system with the Parinello-Rahman method, and using the above
expressions, but with additional \(R_i\)’s for the cell degrees of freedom,
and thermostatting the cell velocities as well as the particle velocities
[Ta15].
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